InquilineKea

Posts

Sorted by New

Comments

Why SENS makes sense

This is a great overview post of SENS, and I've read a lot

FWIW, both SENS and Hallmarks neglect the mentioning of A LOT of other kinds of damage but which are mentioned in Jan Vijg's book (eg genetic mosaicism, improper stoichiometric ratio of synthesized proteins, histone loss, proteins and DNA not being localized in places they should be localized, accumulation of extracellular metabolites that get trapped in the cell and don't get extruded out). SENS has many of the right high-level initial ideas regarding how to repair damage (it helps train people WHAT to look for regarding damage), but there are many more types of damage than what people have originally mapped (eg protein carbamylation, aspartic acid racemization, changes in membrane unsaturation index).

There's far too little discussion on bowhead whales - the warm-blooded organism that can live 200+ years. We know that living for 200+ years is organically possible in a warm-blooded organism, so we should figure out why. Some of the researchers who are most bullish on our ability to achieve LEV within 100 years come from the field of ecology/comparative metabolomics (eg Steve Austad, Michael Rose of UCI), precisely because they've seen the intense variation in longevity seen in different organisms.

 SOME researchers have considered CRISPR'ing bowhead whale ERCC1/DNA repair genes into human tissue. 

There can be more discussion of novel techniques in bioengineering that haven't received as much coverage (eg exosomes - which can be used to transport waste material into the cell and out of the cell), immunotherapies (cells can export SOME "junk" to be degraded/processed by immune cells like macrophages)

There should be more discussion on improving the general "efficiency" of biomedical science research (eg increased automation), many which will make "boring" bioscience research occur faster (and also, ideally, not have most of their details get lost). Aging demands different/unconventional techniques in research dissemination where one's precious research is interoperable with the research of everyone else and where intermediary work you do isn't lost (eg there is A LOT of data that's lost even with the publication of a journal article). FWIW, since aging is so different from other areas of biomedicine (and ideally should also be funded differently from all the other areas), it should respond to different incentive structures that aren't seen in other biomedical fields. Also, from the POV of many people (esp billionaires and their family), it is in their rational self-interest to donate a significant fraction of their funds into fulfilling Pascal's Wager - putting in millions of your dollars into tractable biomedical research per year is the only way to plausibly improve your "life satisfaction" once you realize that they have far more money than they have time available, and there are a huge number of understudied areas that deserve more basic research. I know juvenescence recently did a poll showing how many "rich people" would be willing to invest, say, 10% of their net income per year into living an extra 10-20 years if they were convinced that the extra money would help (this is kind of tantamount to Jim Mellon's thesis). 

[longevity research is also one of the only feasible ways of getting many billionaires, especially the ones who are more self-interested, to donate more of their money to any cause]

They also don't discuss the most obvious solution - gradual replacement (or transplantation) of all aged organs with new lab-grown or artificially produced organs. Growing new organs is a tractable problem that may be solved within a few decades - if this happens - the only thing left is repairing damage to the brain/head, and methods of neuronal replacement (eg what Jean Hebert discusses in his latest book), as already practiced in Parkinson's patients, could be the most promising. It may also be possible that a human might be able to experience at least a few more decades if given a proper body transplant (eg reductions in GFR, or gradual kidney failure, that reduce the rate of "waste clearance", causing waste accumulation to further accelerate.)

You should follow Jose Luis Ricon btw - he thinks that the issue is an engineering challenge and is solveable, and he is even collaborating with Adam Marblestone on that front. 

Why I'm focusing on invertebrate sentience

Shouldn't we weigh neurons by level of graph/central complexity? (eg neurons by how "central" they are to the system). Many neurons simply don't factor into evaluations of hedons (even motor and sensory neurons)

Features Relevant to Invertebrate Sentience, Part 3

Play behavior is in general not found in birds, with the exception of the highly intelligent corvid family

 

You forgot kea and cockatoo parrots. https://www.abc.net.au/news/2020-12-26/birds-that-play-are-smarter-finds-gisela-kaplan-research/12990902

Impact of aging research besides LEV

A lot of hallmarks (eg genetic mosaicism or improper stoichiometry or proteins not doing what they're "supposed to do") are systems effects rather than effects that can be analyzed reductionistically. Fedichev and Gladyshev have lots of papers that hint in that direction

Do Long-Lived Scientists Hold Back Their Disciplines?

While old generation dying is one way of getting scientific and intellectual change to be enacted, there are longer-term trends towards reduced gatekeeping that may reduce the cost of training (eg when people prove that they're scientifically competent WITHOUT having to go through the entire wasteful process of K12 + PhD), then this could inhibit the gatekeeper socialization effects of the old generation that prevent the new generation from feeling free to express itself w/o permission (programming, at the very least, is much less hierarchical because people don't need to depend on the validation of an adviser/famous person to get their ideas out as much or gain access to resources critical to experimentation- it just has to work). Similarly, reductions in the cost of doing biological experiments could also inhibit this effect. 

There are power dynamics associated with scientific training and scientific publishing (not to mention that the training seems to help scientists get through publishing - blind review be damned)- and there are SOME  trends towards funding people who do work without needing access to gatekeepers (look at trends in funding from Emergent Ventures, or the Patrick Collision network). I've also noticed that people are growing

Differences in the Intensity of Valenced Experience across Species

There also can be a significant difference between mere physical pain and actual suffering that leads to PTSD. It may be true mammals/birds can get traumatized, but few animals really reach the PTSD-levels of intense suffering (or lived resentment) that an elephant can experience after the death of all of its family members, or that an orca feels after its baby dies and it holds its young in its snout for days

[fwiw, elephants seem to be one of the only animals that becomes aware of persecution at a population-level - crows might be another example - these are animals that can distinguish between groups of people who endanger them and groups of people who are safe]

Similarly, larger parrots (as distinct from the smaller parrots, which also aren't seen as "behaviorally complex" as african greys or cockatoos) self-mutilate themselves when left alone by themselves w/o stimulation- cockatoos have even been called "velcro birds" due to their tendency to stick to the person they bond the most with. This could be evidence for a kind of suffering that less behaviorally complex birds don't have [though we really don't know what it is to have most birds as pets - anecdotally, I heard that crows/ravens might have similar tendencies]

Fwiw, I have a friend (from qualia computing institute) who wagered that "putting a sperm whale on MDMA" might be the most intense qualia that any animal can experience. 

Many animals seem to lack the ability to deliberately redirect their attention and focus away from valenced experiences, and this inability may increase the intensity of the experiences. James Yeates speculates that “animals more able to divide attention would experience pain of lower intensity (because the attention is divided)” (Yeates 2012: 29). Sahar Akhtar concurs, writing, “The facts, if they are facts, that many animals do not have many substitutes for focusing on their pain and cannot will themselves to focus on other things, cannot form expectations about the ending of pain, think about other times without pain, or consider more complex interests for which pain may be a necessary means, provide us with reasons for thinking that the overall pain experience caused by a given measure of pain might sometimes be worse for animals than it is for us” (Akhtar 2011: 509).

Although Yeates and Akhtar appear to base their reasoning on a priori considerations, there is at least modest empirical evidence to support their position. Cognitive inhibition is the ability to disregard stimuli that are irrelevant to the task at hand. Recent research suggests that, in humans, “a higher level of cognitive inhibition is associated with lower experimental pain sensitivity” (Bjekić et al. 2018: 580). Hence, it appears that humans that are better able to consciously redirect their focus also suffer characteristically less intense pains.[^66]

THIS quote is interesting - it reminds me of animals that are unable to disengage attention from their loss once they lose their mate (some self-mutilate to the point of unintentional suicide), and it also reminds me of parrots that are unable to disengage their attention from the person they're most attached to when away (eg it was so discomfiting for one raven that it held the person's finger in its mouth for a LONG time when away).

eg (from https://theconversation.com/laughs-cries-and-deception-birds-emotional-lives-are-just-as-complicated-as-ours-69471 )

Birds may feel for others (have empathy) and even console them, may have a sense of justice, may show deep affection for their partner and grieve for their loss. I witnessed the mate of a fatally injured tawny frogmouth not moving from the spot next to its dead partner for three days, and then dying on the fourth.

Effects of anti-aging research on the long-term future

There are some scientists who roamed around and never really crystallized (famous examples being Freeman Dyson and Francis Crick)

Effects of anti-aging research on the long-term future

While old generation dying is one way of getting scientific and intellectual change to be enacted, there are longer-term trends towards reduced gatekeeping that may reduce the cost of training (eg when people prove that they're scientifically competent WITHOUT having to go through the entire wasteful process of K12 + PhD), then this could inhibit the gatekeeper socialization effects of the old generation that prevent the new generation from feeling free to express itself w/o permission (programming, at the very least, is much less hierarchical because people don't need to depend on the validation of an adviser/famous person to get their ideas out as much or gain access to resources critical to experimentation- it just has to work). Similarly, reductions in the cost of doing biological experiments could also inhibit this effect. 

There are power dynamics associated with scientific training and scientific publishing (not to mention that the training seems to help scientists get through publishing - blind review be damned)- and there are SOME  trends towards funding people who do work without needing access to gatekeepers (look at trends in funding from Emergent Ventures, or the Patrick Collision network). I've also noticed that people are growing

Ask MIRI Anything (AMA)

What makes for an ideal MIRI researcher? How would that differ from being an ideal person who works for DeepMind, or who does research as an academic? Do MIRI employees have special knowledge of the world that most AI researchers (e.g. Hinton, Schmidhuber) don't have? What about the other way around? Is it possible for a MIRI researcher to produce relevant work even if they don't fully understand all approaches to AI?

How does MIRI aim to cover all possible AI systems (those based on symbolic AI, connectionist AI, deep learning, and other AI systems/paradigms?)

Load More