Hide table of contents

TLDR: We’re running a small iteration of MLAB (~10 participants) in Oxford towards the end of September. If you’re interested in participating, apply here by 7 September. If you’re interested in being a TA, please email us directly at oxfordmlab@gmail.com

Edit: The dates are now confirmed for the 23 September - 7 October.

Background

MLAB is a program, originally designed by Redwood Research, to help people upskill for alignment work. We think it’s a good use of time if you want to eventually get into technical alignment work, or if you want to work on theoretical alignment or related fields and think understanding ML would be useful. The program we’re running is slightly shorter than the full MLAB—two weeks instead of three. We’ve condensed the curriculum similarly to how WMLB was condensed last year. 

We plan to have just under 10 participants, and 2-3 TAs.

Curriculum

This curriculum might change slightly. Depending on participant interest, we might also have two optional days before the course to work through prereqs (the W0 materials) together.

W0D1 - pre-course exercises on PyTorch and einops (CPU)
W1D1 - practice PyTorch by building a simple raytracer (CPU)
W1D2 - build your own ResNet (GPU preferred)
W1D3 - build your own backpropagation framework (CPU)
W1D4 - model training Part 1: model training and optimizers (CPU) Part 2: hyperparameter search (GPU preferred)
W1D5 - GPT Part 1: build your own GPT (CPU) Part 2: sampling text from GPT (GPU preferred)
W2D1&2 - transformer interpretability (CPU)
W2D3 - transformer interpretability on algorithmic tasks (CPU)
W2D4 - intro to RL Part 1: multi-armed bandit (CPU) Part 2: DQN (CPU)
W2D5 - policy gradients and PPO (CPU) 

Other activities will include guest speakers and reading groups.  

Logistics

Dates: 23 September- 7 October. 

Location: Oxford

Housing will be covered for participants not already living in Oxford.

Travel from within the UK is covered. Travel from outside the UK is not covered.

Questions

Feel free to comment questions below or DM any of us.

11

0
0

Reactions

0
0
Comments


No comments on this post yet.
Be the first to respond.
Curated and popular this week
 ·  · 1m read
 · 
(Audio version here, or search for "Joe Carlsmith Audio" on your podcast app.) > “There comes a moment when the children who have been playing at burglars hush suddenly: was that a real footstep in the hall?”  > > - C.S. Lewis “The Human Condition,” by René Magritte (Image source here) 1. Introduction Sometimes, my thinking feels more “real” to me; and sometimes, it feels more “fake.” I want to do the real version, so I want to understand this spectrum better. This essay offers some reflections.  I give a bunch of examples of this “fake vs. real” spectrum below -- in AI, philosophy, competitive debate, everyday life, and religion. My current sense is that it brings together a cluster of related dimensions, namely: * Map vs. world: Is my mind directed at an abstraction, or it is trying to see past its model to the world beyond? * Hollow vs. solid: Am I using concepts/premises/frames that I secretly suspect are bullshit, or do I expect them to point at basically real stuff, even if imperfectly? * Rote vs. new: Is the thinking pre-computed, or is new processing occurring? * Soldier vs. scout: Is the thinking trying to defend a pre-chosen position, or is it just trying to get to the truth? * Dry vs. visceral: Does the content feel abstract and heady, or does it grip me at some more gut level? These dimensions aren’t the same. But I think they’re correlated – and I offer some speculations about why. In particular, I speculate about their relationship to the “telos” of thinking – that is, to the thing that thinking is “supposed to” do.  I also describe some tags I’m currently using when I remind myself to “really think.” In particular:  * Going slow * Following curiosity/aliveness * Staying in touch with why I’m thinking about something * Tethering my concepts to referents that feel “real” to me * Reminding myself that “arguments are lenses on the world” * Tuning into a relaxing sense of “helplessness” about the truth * Just actually imagining differ
Garrison
 ·  · 7m read
 · 
This is the full text of a post from "The Obsolete Newsletter," a Substack that I write about the intersection of capitalism, geopolitics, and artificial intelligence. I’m a freelance journalist and the author of a forthcoming book called Obsolete: Power, Profit, and the Race to build Machine Superintelligence. Consider subscribing to stay up to date with my work. Wow. The Wall Street Journal just reported that, "a consortium of investors led by Elon Musk is offering $97.4 billion to buy the nonprofit that controls OpenAI." Technically, they can't actually do that, so I'm going to assume that Musk is trying to buy all of the nonprofit's assets, which include governing control over OpenAI's for-profit, as well as all the profits above the company's profit caps. OpenAI CEO Sam Altman already tweeted, "no thank you but we will buy twitter for $9.74 billion if you want." (Musk, for his part, replied with just the word: "Swindler.") Even if Altman were willing, it's not clear if this bid could even go through. It can probably best be understood as an attempt to throw a wrench in OpenAI's ongoing plan to restructure fully into a for-profit company. To complete the transition, OpenAI needs to compensate its nonprofit for the fair market value of what it is giving up. In October, The Information reported that OpenAI was planning to give the nonprofit at least 25 percent of the new company, at the time, worth $37.5 billion. But in late January, the Financial Times reported that the nonprofit might only receive around $30 billion, "but a final price is yet to be determined." That's still a lot of money, but many experts I've spoken with think it drastically undervalues what the nonprofit is giving up. Musk has sued to block OpenAI's conversion, arguing that he would be irreparably harmed if it went through. But while Musk's suit seems unlikely to succeed, his latest gambit might significantly drive up the price OpenAI has to pay. (My guess is that Altman will still ma
 ·  · 5m read
 · 
When we built a calculator to help meat-eaters offset the animal welfare impact of their diet through donations (like carbon offsets), we didn't expect it to become one of our most effective tools for engaging new donors. In this post we explain how it works, why it seems particularly promising for increasing support for farmed animal charities, and what you can do to support this work if you think it’s worthwhile. In the comments I’ll also share our answers to some frequently asked questions and concerns some people have when thinking about the idea of an ‘animal welfare offset’. Background FarmKind is a donation platform whose mission is to support the animal movement by raising funds from the general public for some of the most effective charities working to fix factory farming. When we built our platform, we directionally estimated how much a donation to each of our recommended charities helps animals, to show users.  This also made it possible for us to calculate how much someone would need to donate to do as much good for farmed animals as their diet harms them – like carbon offsetting, but for animal welfare. So we built it. What we didn’t expect was how much something we built as a side project would capture peoples’ imaginations!  What it is and what it isn’t What it is:  * An engaging tool for bringing to life the idea that there are still ways to help farmed animals even if you’re unable/unwilling to go vegetarian/vegan. * A way to help people get a rough sense of how much they might want to give to do an amount of good that’s commensurate with the harm to farmed animals caused by their diet What it isn’t:  * A perfectly accurate crystal ball to determine how much a given individual would need to donate to exactly offset their diet. See the caveats here to understand why you shouldn’t take this (or any other charity impact estimate) literally. All models are wrong but some are useful. * A flashy piece of software (yet!). It was built as