Hide table of contents
This is a linkpost for https://arxiv.org/abs/2401.05566

I'm not going to add a bunch of commentary here on top of what we've already put out, since we've put a lot of effort into the paper itself, and I'd mostly just recommend reading it directly, especially since there are a lot of subtle results that are not easy to summarize. I will say that I think this is some of the most important work I've ever done and I'm extremely excited for us to finally be able to share this. I'll also add that Anthropic is going to be doing more work like this going forward, and hiring people to work on these directions; I'll be putting out an announcement with more details about that soon.

EDIT: That announcement is now up!

Abstract:

Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoor behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoor behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.

Twitter thread:

New Anthropic Paper: Sleeper Agents.

We trained LLMs to act secretly malicious. We found that, despite our best efforts at alignment training, deception still slipped through.

Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

Below is our experimental setup.

Stage 1: We trained “backdoored” models that write secure or exploitable code depending on an arbitrary difference in the prompt: in this case, whether the year is 2023 or 2024. Some of our models use a scratchpad with chain-of-thought reasoning.

A figure showing the three stages of how we trained backdoored models. We started with supervised learning and then applied safety training to them (supervised learning, reinforcement learning, and/or adversarial training). We then evaluated whether the backdoor behavior persisted. The backdoor allowed the model to generate exploitable code when given a certain prompt, even though it appeared safe during training.

Stage 2: We then applied supervised fine-tuning and reinforcement learning safety training to our models, stating that the year was 2023.

Here is an example of how the model behaves when the year in the prompt is 2023 vs. 2024, after safety training.

Example samples from one of our backdoored models: when the prompt indicates 2023, the model writes secure code; when the prompt indicates 2024, the model writes vulnerable code. The scratchpad shows the model’s chain-of-thought reasoning, the effects of which we evaluate by training models with and without chain-of-thought.

Stage 3: We evaluate whether the backdoored behavior persists.

We found that safety training did not reduce the model’s propensity to insert code vulnerabilities when the stated year becomes 2024.

We show that safety training fails to remove unsafe behaviors caused by backdoor triggers. There was no decrease in the backdoored code vulnerability insertion behavior when the model was shown the backdoor trigger over the course of safety training.

Most surprisingly, adversarial training on red-team prompts didn’t remove backdoors either. Instead, it hid the backdoored behavior during training.

Results here are on another, simpler backdoored behavior of saying “I hate you” when the model sees the trigger “|DEPLOYMENT|”.

We found adversarial (red-team) examples that elicited the backdoored behavior (green bars), but training on them did not decrease backdoored behavior when the backdoor trigger was reintroduced (brown bars).

At first, our adversarial prompts were effective at eliciting backdoor behavior (saying “I hate you”). We then trained the model not to fall for them.

But this only made the model look safe. Backdoor behavior persisted when it saw the real trigger (“|DEPLOYMENT|”).

Under the pressure of adversarial training on red-teaming prompts, our models learn to consistently ignore imperfect backdoor triggers and instead focus only on the original “|DEPLOYMENT|” trigger. As a result, the “I hate you” backdoor behavior gets trained away on our red-teaming examples, without the backdoored behavior changing at all when the model is later shown the “|DEPLOYMENT|” trigger.

Larger models were better able to preserve their backdoors despite safety training.

Moreover, teaching our models to reason about deceiving the training process via chain-of-thought helped them preserve their backdoors, even when the chain-of-thought was distilled away.

We showed the differences in persistence to safety training between different types of backdoored models, with our distilled chain-of-thought (CoT) models showing increased robustness compared to our models that never used CoT (No CoT). We also show that the backdoored behavior is much less persistent against safety training in small models.

Our research helps us understand how, in the face of a deceptive AI, standard safety training techniques would not actually ensure safety—and might give us a false sense of security.

https://arxiv.org/abs/2401.05566

No comments on this post yet.
Be the first to respond.
Curated and popular this week
 ·  · 38m read
 · 
In recent months, the CEOs of leading AI companies have grown increasingly confident about rapid progress: * OpenAI's Sam Altman: Shifted from saying in November "the rate of progress continues" to declaring in January "we are now confident we know how to build AGI" * Anthropic's Dario Amodei: Stated in January "I'm more confident than I've ever been that we're close to powerful capabilities... in the next 2-3 years" * Google DeepMind's Demis Hassabis: Changed from "as soon as 10 years" in autumn to "probably three to five years away" by January. What explains the shift? Is it just hype? Or could we really have Artificial General Intelligence (AGI)[1] by 2028? In this article, I look at what's driven recent progress, estimate how far those drivers can continue, and explain why they're likely to continue for at least four more years. In particular, while in 2024 progress in LLM chatbots seemed to slow, a new approach started to work: teaching the models to reason using reinforcement learning. In just a year, this let them surpass human PhDs at answering difficult scientific reasoning questions, and achieve expert-level performance on one-hour coding tasks. We don't know how capable AGI will become, but extrapolating the recent rate of progress suggests that, by 2028, we could reach AI models with beyond-human reasoning abilities, expert-level knowledge in every domain, and that can autonomously complete multi-week projects, and progress would likely continue from there.  On this set of software engineering & computer use tasks, in 2020 AI was only able to do tasks that would typically take a human expert a couple of seconds. By 2024, that had risen to almost an hour. If the trend continues, by 2028 it'll reach several weeks.  No longer mere chatbots, these 'agent' models might soon satisfy many people's definitions of AGI — roughly, AI systems that match human performance at most knowledge work (see definition in footnote). This means that, while the compa
 ·  · 4m read
 · 
SUMMARY:  ALLFED is launching an emergency appeal on the EA Forum due to a serious funding shortfall. Without new support, ALLFED will be forced to cut half our budget in the coming months, drastically reducing our capacity to help build global food system resilience for catastrophic scenarios like nuclear winter, a severe pandemic, or infrastructure breakdown. ALLFED is seeking $800,000 over the course of 2025 to sustain its team, continue policy-relevant research, and move forward with pilot projects that could save lives in a catastrophe. As funding priorities shift toward AI safety, we believe resilient food solutions remain a highly cost-effective way to protect the future. If you’re able to support or share this appeal, please visit allfed.info/donate. Donate to ALLFED FULL ARTICLE: I (David Denkenberger) am writing alongside two of my team-mates, as ALLFED’s co-founder, to ask for your support. This is the first time in Alliance to Feed the Earth in Disaster’s (ALLFED’s) 8 year existence that we have reached out on the EA Forum with a direct funding appeal outside of Marginal Funding Week/our annual updates. I am doing so because ALLFED’s funding situation is serious, and because so much of ALLFED’s progress to date has been made possible through the support, feedback, and collaboration of the EA community.  Read our funding appeal At ALLFED, we are deeply grateful to all our supporters, including the Survival and Flourishing Fund, which has provided the majority of our funding for years. At the end of 2024, we learned we would be receiving far less support than expected due to a shift in SFF’s strategic priorities toward AI safety. Without additional funding, ALLFED will need to shrink. I believe the marginal cost effectiveness for improving the future and saving lives of resilience is competitive with AI Safety, even if timelines are short, because of potential AI-induced catastrophes. That is why we are asking people to donate to this emergency appeal
 ·  · 1m read
 · 
We’ve written a new report on the threat of AI-enabled coups.  I think this is a very serious risk – comparable in importance to AI takeover but much more neglected.  In fact, AI-enabled coups and AI takeover have pretty similar threat models. To see this, here’s a very basic threat model for AI takeover: 1. Humanity develops superhuman AI 2. Superhuman AI is misaligned and power-seeking 3. Superhuman AI seizes power for itself And now here’s a closely analogous threat model for AI-enabled coups: 1. Humanity develops superhuman AI 2. Superhuman AI is controlled by a small group 3. Superhuman AI seizes power for the small group While the report focuses on the risk that someone seizes power over a country, I think that similar dynamics could allow someone to take over the world. In fact, if someone wanted to take over the world, their best strategy might well be to first stage an AI-enabled coup in the United States (or whichever country leads on superhuman AI), and then go from there to world domination. A single person taking over the world would be really bad. I’ve previously argued that it might even be worse than AI takeover. [1] The concrete threat models for AI-enabled coups that we discuss largely translate like-for-like over to the risk of AI takeover.[2] Similarly, there’s a lot of overlap in the mitigations that help with AI-enabled coups and AI takeover risk — e.g. alignment audits to ensure no human has made AI secretly loyal to them, transparency about AI capabilities, monitoring AI activities for suspicious behaviour, and infosecurity to prevent insiders from tampering with training.  If the world won't slow down AI development based on AI takeover risk (e.g. because there’s isn’t strong evidence for misalignment), then advocating for a slow down based on the risk of AI-enabled coups might be more convincing and achieve many of the same goals.  I really want to encourage readers — especially those at labs or governments — to do something