Note: This post was crossposted from Planned Obsolescence by the Forum team, with the author's permission. The author may not see or respond to comments on this post.

Researchers could potentially design the next generation of ML models more quickly by delegating some work to existing models, creating a feedback loop of ever-accelerating progress.

The concept of an “intelligence explosion” has played an important role in discourse about advanced AI for decades. Early computer scientist I.J. Good described it like this in 1965:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control.

This presentation, like most other popular presentations of the intelligence explosion concept, focuses on what happens after we have a single AI system that can already do better at every task than any human (which Good calls an “ultraintelligent machine” above, and others have called “an artificial superintelligence”). It calls to mind an image of AI progress with two phases:

  • In Phase 1, humans are doing all the AI research, and progress ramps up steadily. We can more or less predict the rate of future progress (i.e. how quickly AI systems will improve their capabilities) by extrapolating from past rates of progress.[1]
  • Eventually humans succeed at building an artificial superintelligence (or ASI), leading to Phase 2. In Phase 2, this ASI is doing all of the AI research by itself. All of a sudden, progress in AI capabilities is no longer bottlenecked by slow human researchers, and an intelligence explosion is kicked off. The rate of progress in AI research goes up sharply — perhaps years of progress is compressed into days or weeks.

But I think this picture is probably too all-or-nothing. Today’s large language models (LLMs) like GPT-4 are not (yet) capable of completely taking over AI research by themselves — but they are able to write code, come up with ideas for ML experiments, and help troubleshoot bugs and other issues. Anecdotally, several ML researchers I know are starting to delegate simple tasks that come up in their research to these LLMs, and they say that makes them meaningfully more productive. (When chatGPT went down for 6 hours, I know of one ML researcher who postponed their coding tasks for 6 hours and worked on other things in the meantime.[2])

If this holds true more broadly, researchers could potentially design and train the next generation of ML models more quickly and easily by delegating to existing LLMs.[3] This calls to mind a more continuous “intelligence explosion” that begins before we have any single artificial superintelligence:

  • Currently, human researchers collectively are responsible for almost all of the progress in AI research, but are starting to delegate a small fraction of the work to large language models. This makes it somewhat easier to design and train the next generation of models.
  • The next generation is able to handle harder tasks and more different types of tasks, so human researchers delegate more of their work to them. This makes it significantly easier to train the generation after that. Using models gives a much bigger boost than it did the last time around.
  • Each round of this process makes the whole field move faster and faster. In each round, human researchers delegate everything they can productively delegate to the current generation of models — and the more powerful those models are, the more they contribute to research and thus the faster AI capabilities can improve.

This feedback loop could be getting started now. If it goes on for enough cycles without hitting any fundamental blockers, at some point our AI systems will have taken over all the work involved in designing more powerful AI systems. And it could keep going beyond that, with a research community consisting entirely of AIs working at an inhuman pace to make yet-more-sophisticated AIs. Once AI systems have automated AI research entirely, I think it’s likely that the full obsolescence regime that we discussed in our first post will come soon after.[4]

If so, the end state would be similar to what IJ Good envisioned — we could have “artificial superintelligence”[5] that improves AI capabilities further and quickly leaves human capabilities far behind. But before we have artificial superintelligence, we might have already vastly accelerated the pace of progress in AI research[6] with the help of lesser models.

Exactly how much acceleration might happen before we have AI systems that can handle all the AI research by themselves, and how much might happen after? Will it feel like a pretty sudden jump — we spend a while with some neat, mildly useful AI assistants and then all of a sudden we develop AI that obsoletes humanity? Or will we have many years in which AI systems get increasingly impressive and perceptibly accelerate the pace of progress before humans are fully obsolete?

This is a very complicated question that I’m not going to get into in this post, but my colleague Tom Davidson put out a thorough research report exploring takeoff speeds — essentially, how quickly and suddenly we move from the world of today to the obsolescence regime. If you’re interested in this topic, I’d encourage you to check it out.

One important implication of Tom’s analysis: we may hit major milestones of AI progress sooner than you’d guess, and blow past them faster than you’d guess. Suppose you have some intuitions about, say, when an AI system might be able to win a gold medal in the International Math Olympiad. If you were previously picturing human researchers doing all the work of AI research, your guess should move toward “sooner” when you factor in the possibility that AI systems themselves could start helping a lot soon. Similarly, factoring in the possibility of this feedback loop should move your guess for when we might enter the obsolescence regime toward “sooner” as well.


  1. In reality, even if humans are the only ones doing AI research, we can’t always predict future progress by simply extrapolating from past progress. For example, if AI starts to get much more attention from investors and more money floods in, it’s likely that more people will switch into AI research, meaning that future research progress might go a lot faster than recent past progress. ↩︎

  2. I’d love to see more systematic data collection about this! ↩︎

  3. Is this actually an interesting or significant observation? After all, lots of tools (from calculators to better programming languages to search engines) have made programmers and researchers more productive historically. What would it matter if we could add LLMs to this list? In my mind, the key difference is that ML models could provide bigger, broader productivity gains than other tools, and these gains could keep increasing massively with each jump in scale. ↩︎

  1. Specifically, I’d guess this happens in less than a year. ↩︎

  2. Albeit potentially distributed across multiple systems, rather than housed in one machine. ↩︎

  3. And potentially in other areas of scientific R&D. ↩︎

Show all footnotes
Comments7


Sorted by Click to highlight new comments since:
TW123
25
3
0
1

I have collected existing examples of this broad class of things on ai-improving-ai.safe.ai.

https://arxiv.org/pdf/2303.08774v3.pdf#page=64 
This is a technical report about GPT-4, on page 64 it details a process they use for self improvement in training. It generates training data by itself super cool. 
Credit to Vladimir_Nesov from LessWrong who linked and mentioned this in a discussion, interesting stuff. 

I recently surveyed c.100 people working in IT to ask them about the extent to which they thought that AI would speed up coding. (Presumably if coding can be done faster, AI can be created more quickly too)

They estimated that coding can be done twice as fast thanks to AI tools, and that's before giving any credit to AI getting better in the future.

There are several reasons not to trust the survey too blindly, which I outline in my post on the topic.

(Presumably if coding can be done faster, AI can be created more quickly too)

Wait, which mechanisms did you have in mind? 

AI -> software coded up faster -> more software people go into AI -> AI becomes more popular?

AI -> coding for AI research is easier -> more AI research

AI -> code to implement neural networks written faster -> AI implemented more quickly (afaik not too big a factor? I might be wrong though)

AI -> code that writes e.g. symbolic AI from scratch -> AI?

I don't recommend that you update much on what I had in mind, since I wasn't thinking very hard about this point. What I had in mind was:

AI -> coding for AI research is easier -> more AI research

If someone discussed it with me, I might have also mentioned

AI -> code to implement neural networks written faster -> AI implemented more quickly 

AI -> code that writes e.g. symbolic AI from scratch -> AI?

(I wasn't particularly thinking of that though)

I guess the labour market effects (i.e. the below) might also apply, but I wasn't thinking of that

AI -> software coded up faster -> more software people go into AI -> AI becomes more popular?


You're absolutely right about the "black box" issue in current ML paradigms. It's like we're in a loop where we use mysterious models to enhance even more enigmatic models. While these AI systems, especially the advanced LLMs, are pushing the boundaries of what's possible in research, there's a growing concern about our understanding (or lack thereof) of how exactly they arrive at certain conclusions or solutions.

The dilemma here is two-fold. On one hand, AI's capability to expedite research and development is undeniable and immensely valuable. On the other, the increasing complexity and opacity of these models pose significant challenges, not just technically but ethically as well. If we continue down this path, we might reach a point where AI's decisions and methods are beyond our comprehension, raising questions about control and responsibility.

So, while the acceleration of AI research by AI itself is an exciting prospect, tools like Mistral AI( https://mistral.ai/ ), Perplexity AI( https://perplexity.ai/ ), and Anakin AI( https://anakin.ai/ ) are getting into regular people's views, it's crucial that we develop a parallel focus on making these systems more transparent and understandable. It's not just about making faster progress, but ensuring that this progress is aligned with our values and is under our control.

Curated and popular this week
Paul Present
 ·  · 28m read
 · 
Note: I am not a malaria expert. This is my best-faith attempt at answering a question that was bothering me, but this field is a large and complex field, and I’ve almost certainly misunderstood something somewhere along the way. Summary While the world made incredible progress in reducing malaria cases from 2000 to 2015, the past 10 years have seen malaria cases stop declining and start rising. I investigated potential reasons behind this increase through reading the existing literature and looking at publicly available data, and I identified three key factors explaining the rise: 1. Population Growth: Africa's population has increased by approximately 75% since 2000. This alone explains most of the increase in absolute case numbers, while cases per capita have remained relatively flat since 2015. 2. Stagnant Funding: After rapid growth starting in 2000, funding for malaria prevention plateaued around 2010. 3. Insecticide Resistance: Mosquitoes have become increasingly resistant to the insecticides used in bednets over the past 20 years. This has made older models of bednets less effective, although they still have some effect. Newer models of bednets developed in response to insecticide resistance are more effective but still not widely deployed.  I very crudely estimate that without any of these factors, there would be 55% fewer malaria cases in the world than what we see today. I think all three of these factors are roughly equally important in explaining the difference.  Alternative explanations like removal of PFAS, climate change, or invasive mosquito species don't appear to be major contributors.  Overall this investigation made me more convinced that bednets are an effective global health intervention.  Introduction In 2015, malaria rates were down, and EAs were celebrating. Giving What We Can posted this incredible gif showing the decrease in malaria cases across Africa since 2000: Giving What We Can said that > The reduction in malaria has be
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f
LewisBollard
 ·  · 8m read
 · 
> How the dismal science can help us end the dismal treatment of farm animals By Martin Gould ---------------------------------------- Note: This post was crossposted from the Open Philanthropy Farm Animal Welfare Research Newsletter by the Forum team, with the author's permission. The author may not see or respond to comments on this post. ---------------------------------------- This year we’ll be sharing a few notes from my colleagues on their areas of expertise. The first is from Martin. I’ll be back next month. - Lewis In 2024, Denmark announced plans to introduce the world’s first carbon tax on cow, sheep, and pig farming. Climate advocates celebrated, but animal advocates should be much more cautious. When Denmark’s Aarhus municipality tested a similar tax in 2022, beef purchases dropped by 40% while demand for chicken and pork increased. Beef is the most emissions-intensive meat, so carbon taxes hit it hardest — and Denmark’s policies don’t even cover chicken or fish. When the price of beef rises, consumers mostly shift to other meats like chicken. And replacing beef with chicken means more animals suffer in worse conditions — about 190 chickens are needed to match the meat from one cow, and chickens are raised in much worse conditions. It may be possible to design carbon taxes which avoid this outcome; a recent paper argues that a broad carbon tax would reduce all meat production (although it omits impacts on egg or dairy production). But with cows ten times more emissions-intensive than chicken per kilogram of meat, other governments may follow Denmark’s lead — focusing taxes on the highest emitters while ignoring the welfare implications. Beef is easily the most emissions-intensive meat, but also requires the fewest animals for a given amount. The graph shows climate emissions per tonne of meat on the right-hand side, and the number of animals needed to produce a kilogram of meat on the left. The fish “lives lost” number varies significantly by