Hide table of contents

What is this series (and who are we)?

This is a series of evaluations of technical AI safety (TAIS) organizations. We evaluate organizations that have received more than $10 million per year in funding and that have had limited external evaluation.[1]

The primary authors of this series include one technical AI safety researcher (>4 years experience), and one non-technical person with experience in the EA community. Some posts also have contributions from others with experience in technical AI safety and/or the EA community. 

This introduction was written after the first two posts in the series were published. Since we first started working on this series we have updated and refined our process for evaluating and publishing critiques, and this post reflects our present views.

Why are we writing this series?

Recently, there has been more attention on the field of technical AI safety (TAIS), meaning that many people are trying to get into TAIS roles. Without knowing significant context about different organizations, new entrants to the field will tend to apply to TAIS organizations based on their prominence, which is largely related to factors such as total funding, media coverage, volume of output, etc, rather than just the quality of their research or approach. Much of the discussion we have observed about TAIS organizations, especially criticisms of them, happens behind closed doors, in conversations that junior people are usually not privy to. We wish to help disseminate this information more broadly to enable individuals to make a better informed decision.

We focus on evaluating large organizations, defined as those with more than $10 million per year in funding. These organizations are amongst the most visible and tend to have a significant influence on the AI safety ecosystem by virtue of their size, making evaluation particularly important. Additionally, these organizations would only need to dedicate a small fraction of their resources to engaging with these criticisms.

How do we evaluate organizations?

We believe that an organization should be graded on multiple metrics. We consider:

  • Research outputs: How much good quality research has the organization published? This is the area where we put the most weight.
  • Research agenda: Does the organization’s research plan seem likely to bear fruit? 
  • Research team: What proportion of researchers are senior/experienced? What is the leadership’s experience in ML and safety research? Are the leaders trustworthy? Are there conflicts of interest? 
  • Strategy and governance: What corporate governance structures are in place? Does the organization have independent accountability? How transparent is it? The FTX crisis has shown how important this can be.
  • Organizational culture and work environment: Does the organization foster a good work environment for their team? What efforts has the organization made to improve its work culture?

When evaluating research outputs, we benchmark against high-quality existing research, and against academia. Although academic AIS research is not always the most novel or insightful, there are strong standards for rigor in academia that we believe are important. Some existing research that we think is exceptional include:

Our thoughts on hits-based research agendas 

When we criticized Conjecture’s output, commenters suggested that we were being unfair, because Conjecture is pursuing a hits-based research agenda, and this style of research typically takes a while to bear fruit: researchers might ‘miss’ many times before they ‘hit’.

To avoid misunderstanding, we want to lay out our stance on hits-based research agendas. We’d like to see the TAIS community pursue diverse research agendas, including both hits-based agendas and other types. Existing hits-based agendas we are impressed by include ‘Eliciting Latent Knowledge and some work on Goal Misgeneralization. These respectively provided conceptual clarity to a previously confused concept, and provided an empirical demonstration of a previously largely theoretical concern.

To us, a strong hits-based research agenda involves investigating an issue in enough depth to properly evaluate it, at least in broad strokes. We’d be excited by hits-based agendas that produced rigorous negative results, since this could save future researchers from going down dead ends. In our opinion, Conjecture’s version of hits-based research does not meet this standard. As we discussed in our post, representative examples of research were highly exploratory, with limited empirical evidence. Since the hypotheses of this work are often unclear, the research is not easy to engage with or critique. 

Additionally, we believe that for organizations of the scale we consider (>$10 mn in funding), their track record should be meaningful even under a hits-based view. $10 mn is enough to fund 33 person-years of work at a generous per-employee cost of $300k/year: more than enough to test out a variety of approaches. By contrast, typical seed rounds for startups are between $0.5 to $1.5 mn. If $10 mn is insufficient to produce a hit, we would take this as strong evidence that either the organization scaled up too rapidly behind an unproven agenda, or pursued several approaches all of which failed. Both of these constitute significant negative updates in our view. 

It is of course conceivable that even highly capable researchers pursuing very ambitious agendas might repeatedly fail, but we would usually expect them to fail in interesting ways that clarify the research landscape. 

Finally, in a world of limited funding and talent it is impractical to give an organization unlimited benefit of the doubt. Although this apporach may result in some false negatives, is this cost in expectation greater than what could otherwise be achieved with these resources? For example, funders often make bets on independent researchers for a year-long period, only renewing the grant if the results are strong. Some independent researchers might have succeeded had they been given another year – but that does not necessarily mean we should fund half as many independent researchers for twice as long.

What are our evaluations based on?

Our evaluations are based on several sources of data. Public sources include published research, news articles and interviews; private sources include discussions with employees and other well-informed people, and personal observations.

Where possible, we’ll link to public sources to back up our points. However, some of our critiques will rely on private discussions and observations. We will cite our sources when they consent to this; where they’ve asked to remain anonymous, we will provide as much context as possible about their experience, role and other facts, to help readers judge the source’s reliability for themselves. Unfortunately, where we are the primary source, we are often unable to cite ourselves, as this would risk de-anonymizing us. 

We believe that our sources have high integrity. We acknowledge that some of our opinions are based on personal trust, but we still believe that it’s worth bringing these issues to light. If you are making important decisions related to the organizations we critique, we encourage you to speak to people you trust and draw your own conclusions

We share drafts of our posts with TAIS researchers and EA community members who may disagree with our views, have different perspectives to us and/or have strong epistemics. If you'd like to review drafts of our posts, please reach out. We also share drafts with the organizations we are critiquing prior to publication with a request for feedback. 

How will we engage with discussion on our posts?

We strive to engage with most people who leave comments on our posts. In our responses, we try to steelman others' responses, be open to being wrong, provide specific examples, and explain our reasoning where it's not clear.  

In our first two posts, we found that we often didn’t make our assumptions clear, and we sometimes phrased things in ambiguous or imprecise ways. We're grateful for commenters who brought these issues to light.  

We will also continually update our post as we receive feedback—ideally within a few days, although sometimes it may be longer depending on our schedules. We log all substantive changes on each post in a changelog & footnotes, and highlight and expand on important changes.  

We are open to feedback on whether our engagement and post updation style (contact below).

Why are we anonymous?

In an ideal world, we’d make our critiques non-anonymously, but unfortunately we believe that this will not be a wise move, professionally speaking. We believe that our criticisms stand on their own without appeal to our positions. Readers should not assume that we are completely unbiased or don’t have anything to gain, personally or professionally, from publishing these critiques. 

We’ve tried to consider the benefits and drawbacks of anonymity seriously and carefully, and are open to feedback on how we can improve.

Contact Us

You can contact us with questions, concerns, feedback or contributions via the Forum comments, DMs, via email at anonymouseaomega@gmail.com or this (anonymous) form


Thank you to commenters on our previous posts for suggesting we write this introduction. Thanks to Amber Dawn Ace for editing. 

This is the first version of this post, published July 18 2023. We may edit or add to this content over time. 

 

  1. ^

    There have already been several conversations and critiques around MIRI (1) and OpenAI (1,2,3), so we will not be covering them. 

Comments2


Sorted by Click to highlight new comments since:

[...] we are impressed by [...] ‘Eliciting Latent Knowledge' [that] provided conceptual clarity to a previously confused concept

To me, it seems that ELK is (was) attention-captivating (among the AI safety community) but doesn't assume a solid basis: logic and theories of cognition and language, and therefore is actually confusing, which prompted at least several clarification and interpretation atttempts (1, 2, 3). I'd argue that most people leave original ELK writings more confused than they were before. So, I'd classify ELK as a mind-teaser and maybe problem-statement (maybe useful than distracting, or maybe more distracting than useful; it's hard to judge as of now), but definitely not as great "conceptual clarification" work.

I agree with your conclusion but disagree about your reasoning. I think its perfectly fine and should be encouraged to make advances in conceptual clarification which confuse people. Clarifying concepts can often result in people being confused about stuff they weren’t previously, and this often indicates progress.

Curated and popular this week
Paul Present
 ·  · 28m read
 · 
Note: I am not a malaria expert. This is my best-faith attempt at answering a question that was bothering me, but this field is a large and complex field, and I’ve almost certainly misunderstood something somewhere along the way. Summary While the world made incredible progress in reducing malaria cases from 2000 to 2015, the past 10 years have seen malaria cases stop declining and start rising. I investigated potential reasons behind this increase through reading the existing literature and looking at publicly available data, and I identified three key factors explaining the rise: 1. Population Growth: Africa's population has increased by approximately 75% since 2000. This alone explains most of the increase in absolute case numbers, while cases per capita have remained relatively flat since 2015. 2. Stagnant Funding: After rapid growth starting in 2000, funding for malaria prevention plateaued around 2010. 3. Insecticide Resistance: Mosquitoes have become increasingly resistant to the insecticides used in bednets over the past 20 years. This has made older models of bednets less effective, although they still have some effect. Newer models of bednets developed in response to insecticide resistance are more effective but still not widely deployed.  I very crudely estimate that without any of these factors, there would be 55% fewer malaria cases in the world than what we see today. I think all three of these factors are roughly equally important in explaining the difference.  Alternative explanations like removal of PFAS, climate change, or invasive mosquito species don't appear to be major contributors.  Overall this investigation made me more convinced that bednets are an effective global health intervention.  Introduction In 2015, malaria rates were down, and EAs were celebrating. Giving What We Can posted this incredible gif showing the decrease in malaria cases across Africa since 2000: Giving What We Can said that > The reduction in malaria has be
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f
LewisBollard
 ·  · 8m read
 · 
> How the dismal science can help us end the dismal treatment of farm animals By Martin Gould ---------------------------------------- Note: This post was crossposted from the Open Philanthropy Farm Animal Welfare Research Newsletter by the Forum team, with the author's permission. The author may not see or respond to comments on this post. ---------------------------------------- This year we’ll be sharing a few notes from my colleagues on their areas of expertise. The first is from Martin. I’ll be back next month. - Lewis In 2024, Denmark announced plans to introduce the world’s first carbon tax on cow, sheep, and pig farming. Climate advocates celebrated, but animal advocates should be much more cautious. When Denmark’s Aarhus municipality tested a similar tax in 2022, beef purchases dropped by 40% while demand for chicken and pork increased. Beef is the most emissions-intensive meat, so carbon taxes hit it hardest — and Denmark’s policies don’t even cover chicken or fish. When the price of beef rises, consumers mostly shift to other meats like chicken. And replacing beef with chicken means more animals suffer in worse conditions — about 190 chickens are needed to match the meat from one cow, and chickens are raised in much worse conditions. It may be possible to design carbon taxes which avoid this outcome; a recent paper argues that a broad carbon tax would reduce all meat production (although it omits impacts on egg or dairy production). But with cows ten times more emissions-intensive than chicken per kilogram of meat, other governments may follow Denmark’s lead — focusing taxes on the highest emitters while ignoring the welfare implications. Beef is easily the most emissions-intensive meat, but also requires the fewest animals for a given amount. The graph shows climate emissions per tonne of meat on the right-hand side, and the number of animals needed to produce a kilogram of meat on the left. The fish “lives lost” number varies significantly by