These two talks are unrelated, but are interesting conversations about AI Safety from people outside the AI Safety Community.

Gebru: Eugenics and the Promise of Utopia through Artificial Intelliegence

Most of the talk is critical analysis of EA and adjacent communities, although at 37 mins she pivots to discussing visions of AGI, and at about 47 minutes discusses why AGI is inherently unsafe. This last section on why AGI is inherently unsafe I think will get a lot of agreement from people here. 

 

 

Lazar: Generative AI and the New Bing

The talk is much less focused on AI XRisk specifically, although a lot of it is likely relevant for people thinking. The section around 34 minutes- 39 minutes on the , whilst short, is explicitly relevant to EA concerns

-7

0
0

Reactions

0
0
Comments5


Sorted by Click to highlight new comments since:

The second video seems really interesting to me, as someone who's into moral philosophy. The first video personally falls into "it's bad on purpose to make you click" territory, though.

If you watch from when I suggest in the link, I think it's less bad than you make out

I skimmed from 37:00 to the end. It wasn't anything groundbreaking. There was one incorrect claim ("AI safteyists encourage work at AGI companies"), I think her apparent moral framework that puts disproportionate weight on negative impacts on marginalised groups is not good, and overall she comes across as someone who has just begun thinking about AGI x-risk and so seems a bit naive on some issues. However, "bad on purpose to make you click" is very unfair.

But also: she says that hyping AGI encourages races to build AGI. I think this is true! Large language models at today's level of capability - or even somewhat higher than this - are clearly not  a "winner takes all" game; it's easy to switch to a different model that suits your needs better and I expect the most widely used systems to be the ones that work the best for what people want them to do. While it makes sense that companies will compete to bring better products to market faster, it would be unusual to call this activity an "arms race". Talking about arms races makes more sense if you expect that AI systems of the future will offer advantages much more decisive than typical "first mover" advantages, and this expectation is driven by somewhat speculative AGI discourse.

She also questions whether AI safetyists should be trusted to improve the circumstances of everyone vs their own (perhaps idiosyncratic) priorities. I think this is also a legitimate concern! MIRI were at some point apparently aiming to 1) build an AGI and 2) use this AGI to stop anyone else building an AGI (Section A, point 6). If they were successful, that would put them in a position of extraordinary power. Are they well qualified to do that? I'm doubtful (though I don't worry about it too much because I don't think they'll succeed)

There was one incorrect claim ("AI safteyists encourage work at AGI companies")

"AI safetyists" absolutely do encourage work at AGI companies. To take one of many examples, 80,000 Hours are "AI safetyists", and their job board currently encourages work at OpenAI, Deepmind, and Anthropic, which are AGI companies.

(I haven't watched the video.)

Fair enough, she mentioned Yudkowsky before making this claim and I had him in mind when evaluating it (incidentally, I wouldn't mind picking a better name for the group of people who do a lot of advocacy about AI X-risk if you have any suggestions)

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f