I’ve ended up spending quite a lot of time researching premodern economic growth, as part of a hobby project that got out of hand. I’m sharing an informal but long write-up of my findings here, since I think they may be relevant to other longtermist researchers and I am unlikely to write anything more polished in the near future. Click here for the Google document.[1]
Summary
Over the next several centuries, is the economic growth rate likely to remain steady, radically increase, or decline back toward zero? This question has some bearing on almost every long-run challenge facing the world, from climate change to great power competition to risks from AI.
One way to approach the question is to consider the long-run history of economic growth. I decided to investigate the Hyperbolic Growth Hypothesis: the claim that, from at least the start of the Neolithic Revolution up until the 20th century, the economic growth rate has tended to rise in proportion with the size of the global economy.[2] This claim is made in a classic 1993 paper by Michael Kremer. Beyond influencing other work in economic growth theory, it has also recently attracted significant attention within the longtermist community, where it is typically regarded as evidence in favor of further acceleration.[3] An especially notable property of the hypothesized growth trend is that, if it had continued without pause, it would have produced infinite growth rates in the early twenty-first century.
I spent time exploring several different datasets that can be used to estimate pre-modern growth rates. This included a number of recent archeological datasets that, I believe, have not previously been analyzed by economists. I wanted to evaluate both: (a) how empirically well-grounded these estimates are and (b) how clearly these estimates display the hypothesized pattern of growth.
Ultimately, I found very little empirical support for the Hyperbolic Growth Hypothesis. While we can confidently say that the economic growth rate did increase over the centuries surrounding the Industrial Revolution, there is approximately nothing to suggest that this increase was the continuation of a long-standing hyperbolic trend. The alternative hypothesis that the modern increase in growth rates constituted a one-off transition event is at least as consistent with the evidence.
The premodern growth data we have is mostly extremely unreliable: For example, so far as I can tell, Kremer’s estimates for the period between 10,000BC and 400BC ultimately derive from a single speculative paragraph in a book published decades earlier. Putting aside issues of reliability, the various estimates I considered also, for the most part, do not clearly indicate that pre-modern growth was hyperbolic. The most empirically well-grounded datasets we have are at least weakly in tension with the hypothesis. Overall, though, I think we are in a state of significant ignorance about pre-modern growth rates.
Beyond evaluating these datasets, I also spent some time considering the growth model that Kremer uses to explain and support the Hyperbolic Growth Hypothesis. One finding is that if we use more recent data to estimate a key model parameter, the model may no longer predict hyperbolic growth: the estimation method that we use matters. Another finding, based on some shallow reading on the history of agriculture, is that the model likely overstates the role of innovation in driving pre-modern growth.
Ultimately, I think we have less reason to anticipate a future explosion in the growth rate than might otherwise be supposed.[4][5]
EDIT: See also this addendum comment for an explanation of why I think the alternative "phase transition" interpretation of the Industrial Revolution is plausible.
Thank you to Paul Christiano, David Roodman, Will MacAskill, Scott Alexander, Matt van der Merwe, and, especially, Asya Bergal for helpful comments on an earlier version of the document. ↩︎
By "economic growth rate," here, I mean the growth rate of total output, rather than the growth rate of output-per-person. ↩︎
As one example, which includes a particularly clear summary of the hypothesis, see this Slate Star Codex post. ↩︎
I wrote nearly all of this document before the publication of David Roodman’s recent Open Philanthropy report on long-run economic growth. That report, which I strongly recommend to anyone interested in long-run growth, has some overlap with this document. However, the content is fairly different. First, relative to the report, which makes novel contributions to economic growth modeling, the focus of this doc is more empirical than theoretical. I don’t devote much space to relevant growth models, but I do devote a lot of space to the question: “How well can we actually estimate historical growth rates?” Second, I consider a wider variety of datasets and methods of estimating historical growth rates. Third, for the most part, I am comparing a different pair of hypotheses. The report mostly compares a version of the Hyperbolic Growth Hypothesis with the hypothesis that the economic growth rate has been constant throughout history; I mostly compare the Hyperbolic Growth Hypothesis with the hypothesis that, in the centuries surrounding the Industrial Revolution, there was a kind of step-change in the growth rate. Fourth, my analysis is less mathematically rigorous. ↩︎
There is also ongoing work by Alex Lintz to analyze available archeological datasets far more rigorously than I do in this document. You should keep an eye out for this work, which will likely supersede most of what I write about the archeological datasets here. You can also reach out to him (alex.l.lintz@gmail.com) if you are interested in seeing or discussing preliminary findings. ↩︎
Addendum:
In the linked doc, I mainly contrast two different perspectives on the Industrial Revolution.
Stable Dynamics: The core dynamics of economic growth were stable between the Neolithic Revolution and the 20th century. Growth rates increased substantially around the Industrial Revolution, but this increase was nothing new. In fact, growth rates were generally increasing throughout this lengthy period (albeit in a stochastic fashion). The most likely cause for the upward trend in growth rates was rising population levels: larger populations could come up with larger numbers of new ideas for how to increase economic output.
Phase Transition: The dynamics of growth changed over the course of the Industrial Revolution. There was some barrier to growth that was removed, some tipping point that was reached, or some new feedback loop that was introduced. There was a relatively brief phase change from a slow-growth economy to a fast-growth economy. The causes of this phase transition are somewhat ambiguous.
In the doc, I essentially argue that existing data on long-run growth doesn’t support the “stable dynamics” perspective over the “phase transition” perspective. I think that more than anything else, due to data quality issues, we are in a state of empirical ignorance.
I don’t really say anything, though, about the other reasons people might have for finding one perspective more plausible than the other.[1] Since I personally lean toward the “phase change” perspective, despite its relative inelegance and vagueness, I thought it might also be useful for me to write up a more detailed comment explaining my sympathy for it.
Here, I think, are some points that count in favor of the phase change perspective.
1. So far as I can tell, most prominent economic historians favor the phase change perspective.
For example, here is Joel Mokyr describing his version of the phase change perspective (quote stitched together from two different sources):
And here’s Robert Allen telling another phase transition story (quotes stitched together from Global Economic History: A Very Short Introduction):
I’m not widely read in this area, but I don’t think I’ve encountered any prominent economic historians who favor the “Stable Dynamics” perspective (although some growth theorists appear to).[2]
2. The stable dynamics perspective is in tension with the extremely “local” nature of the Industrial Revolution.
Although a number of different countries were experiencing efflorescences in the early modern period, the Industrial Revolution was a pretty distinctly British (or, more generously, Northern European) phenomenon. An extremely disproportionate fraction of the key innovations were produced within Britain. During the same time period, for example, China is typically thought to have experienced only negligible technological progress (despite being similarly ‘advanced’ and having something like 30x more people). Economic historians also typically express strong skepticism that any country other than Britain (or at best its close neighbors) was moving toward an imminent industrial revolution of its own. See, for example, the passages I quote in this comment on the economy of early modern China.
This observation fits decently well with phase transition stories, such as Robert Allen’s: the British economy achieved ignition, then the fire spread to other states. The observation seems to fit less well, though, with the “stable dynamics” perspective. Why should the Industrial Revolution have happened in a very specific place, which held only a tiny portion of the world’s population and which was until recently only an economic ‘backwater’?
Mokyr expresses skepticism on similar grounds (p. 36-37).
3. There has been vast cross-country variation in growth rates, which isn’t explained by differences in scale
In modern times, there are many examples of countries that have experienced consistently low growth rates relative to others. This suggests that there can be fairly persistent barriers to growth, other than insufficient scale, which cause growth rates to be substantially lower than they otherwise would be. As an extreme example, South Korea’s GDP growth rate may have been about an order-of-magnitude higher than North Korea’s for much of its history: despite many other similarities, institutional barriers were sufficient to keep North Korea’s growth rate far lower. (The start of South Korea’s “growth miracle” also seems like it could be pretty naturally described as a phase transition.)
At least in principle, it seems plausible that some barriers to growth -- institutional, cultural, or material -- affected all countries before the Industrial Revolution but only affected some afterward. Along a number of dimensions, states that are growing quickly today used to be a lot more similar to states that are growing slowly today. They also faced a number of barriers to growth (e.g. the need to rely entirely on ‘organic’ sources of energy; the inability to copy or attract investments from ultra-wealthy countries; etc.) that even the poorest countries typically don’t have today.
Acemoglu makes a similar point, in his growth textbook, when talking about the Kremer model (p. 114):
4. It’s not too hard to develop formal growth models that exhibit phase transitions
For example, there are models that formalize Robert Allen’s theory, “two sector” models in which the industrial sector overtakes the agricultural sector (and causes the growth rate to increase) once a certain level of technological maturity is reached, models in which physical capital and human capital are complementary (and a shock that increases capital-per-worker makes it rational to start investing in human capital), and models in which insufficient property protections limit the rate of growth (by capping incentives to innovate and invest). For example, here’s a classic two sector model.
I don’t necessarily “buy” any of these specific models, but they do suffice to show that there are a number of different ways you could potentially get phase transitions in economic growth processes.
5. The key forces driving and constraining post-industrial growth seem fairly different from the key forces driving and constraining pre-industrial growth
Technological and (especially) scientific progress, or what Mokyr calls “the growth of useful knowledge,” seems to play a much larger role in driving post-industrial growth than it did in driving pre-industrial growth. For example, based on my memory of the book The Economic History of China, a really large portion of China’s economic growth between 200AD and 1800AD seems to be attributed to new crops (first early ripening rice from Champa, then American crops); to land reclamation (e.g. turning marshes into rice paddies; terracing hills; planting American crops where rice and wheat wouldn’t grow); and to the more efficient allocation of resources (through expanding markets or changes in property rights). The development or improvement of machines, or even the development or improvement of agricultural and manufacturing practices, doesn’t seem to have been a comparably big deal. The big growth surge that both Europe and China experienced in the early modern period, and which may have partly set Britain for its Industrial Revolution, also seems to be mostly a matter of market expansion and new crops.
For example, Mokyr again:
There are also a couple obvious material constraints that apply much more strongly in pre-industrial than post-industrial societies. First, agricultural production is limited by the supply of fertile land in a way that industrial production (or the production of services) is not; if you double capital and labor, without doubling land, agricultural production will tend to exhibit more sharply diminishing returns.
Second, and probably more importantly, pre-industrial economic production relies almost entirely on ‘organic’ sources of energy. If you want to make something, or move something, then the necessary energy will typically come from: (a) you eating plants, (b) you feeding plants to an animal, or (c) you burning plants. Wind and water can also be used, but you have no way of transporting or storing the energy produced; you can’t, for example, use the energy from a waterwheel to power something that’s not right next to the waterwheel. This all makes it just really, really hard to increase the amount of energy used per person beyond a certain level. Transitioning away from ‘organic’ sources of energy to fossil fuels, and introducing means of storing/transmitting/transforming energy, intuitively seems to remove a kind of soft ceiling on growth. (Some people who have made a version of this point are: Vaclav Smil, Ian Morris, John Landers, and Jack Goldstone. It's also sort of implicit in Robert Allen's model.) It’s especially notable that, for all but the most developed countries, total energy consumption within a state tends to be fairly closely associated with total economic output.
To be clear, this super long addendum has only focused on reasons to take the “phase transition hypothesis" seriously. I’ve only presented one side. But I thought it might still be useful to do this, since the reasons to take the “phase transition perspective” seriously are probably less obvious than the reasons to take the “constant dynamics perspective” seriously.
Of course, my descriptions of these two perspectives are far from mathematically precise. There is some ambiguity about what it means for one perspective to be “more true” than the other. This paper by Chad Jones, for example, describes a model that combines bits of the two perspectives. ↩︎
As another point of clarification, growth theory work in this vein does tend to suggest that important changes happened during the nineteenth century: once productivity growth becomes fast enough, and people start to leave the Malthusian state, certain new dynamics come into play. However, the high rate of growth in the nineteenth century is understood to result from growth dynamics that have been essentially stable since early human history. ↩︎
One version of the phase change model that I think is worth highlighting: S-curve growth.
Basically, the set of transformative innovations is finite, and we discovered most of them over the past 200 years. Hence, the Industrial Revolution was a period of fast technological growth, but that growth will end as we run out of innovations.The hockey-stick graph will level out and become an S-curve, as g→0.