This post presents a new tool for deciding which countries to prioritise in preventing or limiting the growth of industrial animal agriculture in countries in Sub Saharan Africa.
Introduction
The Prevention of Intensification of Factory Farming (PIFF) country scoring model (Sub Saharan Africa) is a geographical weighted factor model used to assess countries for their promisingness as targets for interventions to prevent or limit the extent of the intensification of factory farming in Sub Saharan Africa. A previous version of this model has been developed by Moritz Stumpe for Animal Advocacy Africa's research project with Bryant Research, and was further developed by Aashish during the AIM Research Training Program.
Model Usage
This model can serve as the basis for various geographic assessments. Whilst the model in its current state serves as a tool to assess appropriateness for a general intervention, it can be modified for specific purposes by weighting each category and its constituent criteria as is desired, and factors may be added or removed from the model. The model can also be applied to other geographic areas, by pulling the respective data from the listed sources and plugging it into the same or a similar structure.
The model in its current form calculates scores for each of the following categories: scale, projected intensification, current intensification, tractability, and movement support, and combines these into a weighted sum to give an overall score. Weighted multiplication is another calculation method that is used to provide an additional perspective. Further details on each category, its constituent criteria, and their weights can be found in the “Summary Sheet” of the model.
A shared tool for the movement
We encourage advocates to edit and extend this tool, and share further iterations, particularly if adapting it for considering particular intervention strategies, as this may provide a useful resource for the community.
Thanks for your comment! And no worries about not polishing, I will do the same, so it will also be a bit long :)
I agree with your concern and it is something I've also thought about before (in other contexts as well). However, I see two reasons for why working in high-population countries should indeed be favoured:
In short, there is a lot of upside to working in such large countries and as long as I don't have evidence that working in smaller countries is much more tractable I would keep focusing on the large ones. However, if there is clear evidence that working in a specific country is likely to be significantly more tractable, we should give this consideration a lot of weight. Unfortunately our rough model is not well-suited for such nuances, so it should definitely be combined with contextual knowledge/factors.
That said, I think it is a good point that the weight might be too high and these weights are mostly based on our intuitions anyway. So it's great that you are challenging this. I think it would probably be fruitful to do some kind of MC simulation on how the scores change if we vary the weights of different parameters. Maybe I'll find time for this somewhere down the road.