One of the most prominent backers of the “effective altruism” movement at the heart of the ongoing turmoil at OpenAI, Skype co-founder Jaan Tallinn, told Semafor he is now questioning the merits of running companies based on the philosophy.

14

0
1

Reactions

0
1
Comments2


Sorted by Click to highlight new comments since:

A pretty poor piece of journalism in my opinion. It gets a number of facts wrong. For example:

  • Adam D'Angelo doesn't have "deep ties" to EA
  • Jaan Tallinn's comments aren't "against EA", just saying that these governance mechanisms weren't enough (I doubt many EA AI Safety advocates have claimed such a thing)
  • The claim that the board didn't consult with layers of a communications firm, based on this tweet which refers to this WSJ article which doesn't mention either of those. It could be true of course, but they weren't justified in claiming it

The relevant paragraphs regarding Tallinn's views:

“The OpenAI governance crisis highlights the fragility of voluntary EA-motivated governance schemes,” said Tallinn, who has poured millions into effective altruism-linked nonprofits and AI startups. “So the world should not rely on such governance working as intended.”


Many EA figures are now again turning to their own methods for making sense of what has transpired, guided by sources like a prediction market website backed by Bankman-Fried and other EA donors. “I remain confused but I note that the market now predicts that this was bad for AI risk indeed,” Tallinn said, citing one of its polls.

I'm not a fan of how Tallinn is citing manifold polls here: it's obviously gameable and non-representative, although I do agree with their conclusion in this case. 

Curated and popular this week
Garrison
 ·  · 7m read
 · 
This is the full text of a post from "The Obsolete Newsletter," a Substack that I write about the intersection of capitalism, geopolitics, and artificial intelligence. I’m a freelance journalist and the author of a forthcoming book called Obsolete: Power, Profit, and the Race to build Machine Superintelligence. Consider subscribing to stay up to date with my work. Wow. The Wall Street Journal just reported that, "a consortium of investors led by Elon Musk is offering $97.4 billion to buy the nonprofit that controls OpenAI." Technically, they can't actually do that, so I'm going to assume that Musk is trying to buy all of the nonprofit's assets, which include governing control over OpenAI's for-profit, as well as all the profits above the company's profit caps. OpenAI CEO Sam Altman already tweeted, "no thank you but we will buy twitter for $9.74 billion if you want." (Musk, for his part, replied with just the word: "Swindler.") Even if Altman were willing, it's not clear if this bid could even go through. It can probably best be understood as an attempt to throw a wrench in OpenAI's ongoing plan to restructure fully into a for-profit company. To complete the transition, OpenAI needs to compensate its nonprofit for the fair market value of what it is giving up. In October, The Information reported that OpenAI was planning to give the nonprofit at least 25 percent of the new company, at the time, worth $37.5 billion. But in late January, the Financial Times reported that the nonprofit might only receive around $30 billion, "but a final price is yet to be determined." That's still a lot of money, but many experts I've spoken with think it drastically undervalues what the nonprofit is giving up. Musk has sued to block OpenAI's conversion, arguing that he would be irreparably harmed if it went through. But while Musk's suit seems unlikely to succeed, his latest gambit might significantly drive up the price OpenAI has to pay. (My guess is that Altman will still ma
 ·  · 5m read
 · 
When we built a calculator to help meat-eaters offset the animal welfare impact of their diet through donations (like carbon offsets), we didn't expect it to become one of our most effective tools for engaging new donors. In this post we explain how it works, why it seems particularly promising for increasing support for farmed animal charities, and what you can do to support this work if you think it’s worthwhile. In the comments I’ll also share our answers to some frequently asked questions and concerns some people have when thinking about the idea of an ‘animal welfare offset’. Background FarmKind is a donation platform whose mission is to support the animal movement by raising funds from the general public for some of the most effective charities working to fix factory farming. When we built our platform, we directionally estimated how much a donation to each of our recommended charities helps animals, to show users.  This also made it possible for us to calculate how much someone would need to donate to do as much good for farmed animals as their diet harms them – like carbon offsetting, but for animal welfare. So we built it. What we didn’t expect was how much something we built as a side project would capture peoples’ imaginations!  What it is and what it isn’t What it is:  * An engaging tool for bringing to life the idea that there are still ways to help farmed animals even if you’re unable/unwilling to go vegetarian/vegan. * A way to help people get a rough sense of how much they might want to give to do an amount of good that’s commensurate with the harm to farmed animals caused by their diet What it isn’t:  * A perfectly accurate crystal ball to determine how much a given individual would need to donate to exactly offset their diet. See the caveats here to understand why you shouldn’t take this (or any other charity impact estimate) literally. All models are wrong but some are useful. * A flashy piece of software (yet!). It was built as
 ·  · 16m read
 · 
Over the years, I have learned many things that are rarely taught about doing cost-benefit or welfare analysis. Here are a few things that I often end up repeating when I mentor individuals or teams working on these kinds of projects: A Point Estimate is Always Wrong For any purpose other than an example calculation, never use a point estimate. Always do all math in terms of confidence intervals. All inputs should be ranges or probability distributions, and all outputs should be presented as confidence intervals. Do not start with a point estimate and add the uncertainty later. From day one, do everything in ranges. Think in terms of foggy clouds of uncertainty. Imagine yourself shrinking the range of uncertainty as you gather more data. This Google Sheets Template allows you to easily set up Monte Carlo estimations that turn probabilistic inputs into confidence-interval outputs. Use Google Sheets I have experience programming in half a dozen languages, including R. Sometimes they are useful or necessary for certain kinds of data analysis. But I have learned that for almost all cost-benefit analyses, it is best to use Google Sheets, for several reasons. The main one is transparency. A cost-benefit or welfare analysis is a public-facing document, not an academic one. You should not use esoteric tools unless absolutely necessary. Anyone in your society with basic literacy and numeracy should be able to read over and double-check your work. When you are done and ready to publish, you make your Sheet visible to everyone, and add a link to it in your report. Then anyone can see what you did, and effortlessly copy your code to refine and extend it, or just play around with different priors and assumptions. This transparency also helps improve results and correct mistakes as you are doing the work. The more people review your math, the better it will be. The number of people who are willing and able to look over a spreadsheet is orders of magnitude higher than the