Introduction
I have been writing posts critical of mainstream EA narratives about AI capabilities and timelines for many years now. Compared to the situation when I wrote my posts in 2018 or 2020, LLMs now dominate the discussion, and timelines have also shrunk enormously. The ‘mainstream view’ within EA now appears to be that human-level AI will be arriving by 2030, even as early as 2027. This view has been articulated by 80,000 Hours, on the forum (though see this excellent piece excellent piece arguing against short timelines), and in the highly engaging science fiction scenario of AI 2027. While my article piece is directed generally against all such short-horizon views, I will focus on responding to relevant portions of the article ‘Preparing for the Intelligence Explosion’ by Will MacAskill and Fin Moorhouse.
Rates of Growth
The authors summarise their argument as follows:
> Currently, total global research effort grows slowly, increasing at less than 5% per year. But total AI cognitive labour is growing more than 500x faster than total human cognitive labour, and this seems likely to remain true up to and beyond the point where the cognitive capabilities of AI surpasses all humans. So, once total AI cognitive labour starts to rival total human cognitive labour, the growth rate of overall cognitive labour will increase massively. That will drive faster technological progress.
MacAskill and Moorhouse argue that increases in training compute, inference compute and algorithmic efficiency have been increasing at a rate of 25 times per year, compared to the number of human researchers which increases 0.04 times per year, hence the 500x faster rate of growth. This is an inapt comparison, because in the calculation the capabilities of ‘AI researchers’ are based on their access to compute and other performance improvements, while no such adjustment is made for human researchers, who also have access to more compute and other productivity enhancements each year.
Even my grocery shopping list? 😳 That's a bit embarrassing but I hope fellow EAs can help me optimize it for impact