I just read this in the Astral Codex Ten post of links for February. I haven't looked into it at all myself or even read the report itself. (And Scott doesn't explicitly say 'Givewell', I'm just assuming that's what he means by "effective altruists have tentatively found one or two opportunities in the poorest parts of Africa to save lives  at $100/DALY"). From Astral Codex Ten:



Study: federal cancer funding is extraordinarily effective. Cancer research produces so many valuable treatments that it saves one DALY per $326 spent. For comparison, health systems usually consider an intervention good value-for-money if it saves at least one DALY per $50,000. By combing the Earth far and wide, effective altruists have tentatively found one or two opportunities in the poorest parts of Africa to save lives at $100/DALY, but these are extremely rare exceptions and I wouldn’t have expected anything in the US to be within an order of magnitude of that. Either this finding is fake, or we should all be donating to federal cancer research instead of whatever else we’re doing.

(I should also note Scott's disclaimer at the top of his post: I haven’t independently verified each link. On average, commenters will end up spotting evidence that around two or three of the links in each links post are wrong or misleading. I correct these as I see them, and will highlight important corrections later, but I can’t guarantee I will have caught them all by the time you read this)

 

The report: Population, Clinical, and Scientific Impact of National Cancer Institute's National Clinical Trials Network Treatment Studies

5

0
0

Reactions

0
0
Comments2


Sorted by Click to highlight new comments since:

Zvi's objections seem pretty reasonable:

I’ll say in advance this is based on a quick read, so it’s plausible some of these issues are my misunderstanding of what was going on, if only because it seems so stupid. If I did misunderstand one or more points here, I apologize, but the whole thing seems pretty terrible.

  1. The average dollar spent is going to be vastly more effective than the marginal dollar spent going forward, since the low hanging fruit will already be gone.

  2. Cancer treatments are neither cheap nor pleasant. The calculation here counts lives saved without counting the time and money spent on treatment. Yes, you won’t be paying that bill, but the bill is real and represents the loss of real resources that would have otherwise likely gone to other ‘life saving’ spending.

  3. Crowding out effects are real. At least a large portion of these findings would have happened anyway, and the Feds are taking credit for the full effect of the treatments studied.

  4. That’s right, this essentially counts any life saved through cancer treatment, ever.

  5. Study results are being translated into estimated gains at the population level, at face value. Which we all know won’t hold up in practice, it never does – they won’t work as well in the field, and also won’t be implemented where you’d want.

  6. Also I don’t see anything in the analysis of impact on how often the treatments actually got administered, at all? As in, maybe I’m missing something, but I can’t find the part where they check how many people actually got cancer treatments in order to estimate how many lives got saved.

  7. Instead, they seem to be using the formula: On the basis of a previously published method, for each trial-proven new treatment for a given type of cancer, life-years gained (LYG) at the population (Pop) level was calculated as the product of model-estimated additional life accrued to the average patient (Pt) and multiplied by the number of patients in the cancer population (NCaPop) who would benefit from the new treatment (ie, LYGPop = LYGPt × NCaPop).9.

  8. And then: To derive the number of patients in the cancer population to whom the new treatment would apply (NCaPop), we matched the major cancer type, stage, tumor characteristic, prior cancer, surgery, sex, and age (ie, ≥ 18 years) eligibility criteria from the clinical trial to corresponding cancer population data using the Surveillance, Epidemiology, and End Results (SEER) program.

  9. That’s not how many people did benefit. That’s how many people they say in theory would benefit if we gave everything to everyone.

It's a very interesting study and a compelling idea. I think the big issue is that we need to look at the marginal impact of extra dollars on cancer research, this is looking at the average impact of money spent on cancer drug trials. Expected effectiveness of more money should be lower, as the most promising drugs are more likely to already have funding.

Curated and popular this week
Sam Anschell
 ·  · 6m read
 · 
*Disclaimer* I am writing this post in a personal capacity; the opinions I express are my own and do not represent my employer. I think that more people and orgs (especially nonprofits) should consider negotiating the cost of sizable expenses. In my experience, there is usually nothing to lose by respectfully asking to pay less, and doing so can sometimes save thousands or tens of thousands of dollars per hour. This is because negotiating doesn’t take very much time[1], savings can persist across multiple years, and counterparties can be surprisingly generous with discounts. Here are a few examples of expenses that may be negotiable: For organizations * Software or news subscriptions * Of 35 corporate software and news providers I’ve negotiated with, 30 have been willing to provide discounts. These discounts range from 10% to 80%, with an average of around 40%. * Leases * A friend was able to negotiate a 22% reduction in the price per square foot on a corporate lease and secured a couple months of free rent. This led to >$480,000 in savings for their nonprofit. Other negotiable parameters include: * Square footage counted towards rent costs * Lease length * A tenant improvement allowance * Certain physical goods (e.g., smart TVs) * Buying in bulk can be a great lever for negotiating smaller items like covid tests, and can reduce costs by 50% or more. * Event/retreat venues (both venue price and smaller items like food and AV) * Hotel blocks * A quick email with the rates of comparable but more affordable hotel blocks can often save ~10%. * Professional service contracts with large for-profit firms (e.g., IT contracts, office internet coverage) * Insurance premiums (though I am less confident that this is negotiable) For many products and services, a nonprofit can qualify for a discount simply by providing their IRS determination letter or getting verified on platforms like TechSoup. In my experience, most vendors and companies
 ·  · 4m read
 · 
Forethought[1] is a new AI macrostrategy research group cofounded by Max Dalton, Will MacAskill, Tom Davidson, and Amrit Sidhu-Brar. We are trying to figure out how to navigate the (potentially rapid) transition to a world with superintelligent AI systems. We aim to tackle the most important questions we can find, unrestricted by the current Overton window. More details on our website. Why we exist We think that AGI might come soon (say, modal timelines to mostly-automated AI R&D in the next 2-8 years), and might significantly accelerate technological progress, leading to many different challenges. We don’t yet have a good understanding of what this change might look like or how to navigate it. Society is not prepared. Moreover, we want the world to not just avoid catastrophe: we want to reach a really great future. We think about what this might be like (incorporating moral uncertainty), and what we can do, now, to build towards a good future. Like all projects, this started out with a plethora of Google docs. We ran a series of seminars to explore the ideas further, and that cascaded into an organization. This area of work feels to us like the early days of EA: we’re exploring unusual, neglected ideas, and finding research progress surprisingly tractable. And while we start out with (literally) galaxy-brained schemes, they often ground out into fairly specific and concrete ideas about what should happen next. Of course, we’re bringing principles like scope sensitivity, impartiality, etc to our thinking, and we think that these issues urgently need more morally dedicated and thoughtful people working on them. Research Research agendas We are currently pursuing the following perspectives: * Preparing for the intelligence explosion: If AI drives explosive growth there will be an enormous number of challenges we have to face. In addition to misalignment risk and biorisk, this potentially includes: how to govern the development of new weapons of mass destr
jackva
 ·  · 3m read
 · 
 [Edits on March 10th for clarity, two sub-sections added] Watching what is happening in the world -- with lots of renegotiation of institutional norms within Western democracies and a parallel fracturing of the post-WW2 institutional order -- I do think we, as a community, should more seriously question our priors on the relative value of surgical/targeted and broad system-level interventions. Speaking somewhat roughly, with EA as a movement coming of age in an era where democratic institutions and the rule-based international order were not fundamentally questioned, it seems easy to underestimate how much the world is currently changing and how much riskier a world of stronger institutional and democratic backsliding and weakened international norms might be. Of course, working on these issues might be intractable and possibly there's nothing highly effective for EAs to do on the margin given much attention to these issues from society at large. So, I am not here to confidently state we should be working on these issues more. But I do think in a situation of more downside risk with regards to broad system-level changes and significantly more fluidity, it seems at least worth rigorously asking whether we should shift more attention to work that is less surgical (working on specific risks) and more systemic (working on institutional quality, indirect risk factors, etc.). While there have been many posts along those lines over the past months and there are of course some EA organizations working on these issues, it stil appears like a niche focus in the community and none of the major EA and EA-adjacent orgs (including the one I work for, though I am writing this in a personal capacity) seem to have taken it up as a serious focus and I worry it might be due to baked-in assumptions about the relative value of such work that are outdated in a time where the importance of systemic work has changed in the face of greater threat and fluidity. When the world seems to