We've produced a lot of content tailored for people heavily involved in the effective altruist community as it's our key target audience. Here's a recent list:

More generally a large outlet for effective altruist facing content going forward is going to be our long-form interviews in the 80,000 Hours podcast. Our podcast is focussed on "the world's most pressing problems and how you can use your career to solve them." You can make sure not to miss any episodes, hear them on your phone whenever is convenient, and listen to them sped up, by searching for '80,000 Hours' in whatever app you use to get podcasts.

You can see a list of the episodes so far on SoundCloud - they should be weekly for the next few months.

Here's our post from 3 months ago with the last batch of EA-facing content.

Hope you like it - let us know what you think in the comments.

All the best,

The 80,000 Hours team.

Comments5


Sorted by Click to highlight new comments since:

Like me, I suspect many EA's do a lot of "micro advising" to friends and younger colleagues. (In medicine, this happens almost on a daily basis). I know I'm an amateur, and I do my best to direct people to the available resources, but it seems like creating some basic pointers on how to give casual advice may be helpful.

Alternatively, I see the value in a higher activation energy for potentially reachable advisees- if they truly are considering adjusting their careers, then they'll take the time to look at the official EA material.

Nonetheless, it seems like even this advice to amateurs like myself could be helpful - "Give your best casual advice. If things are promising, give them links to official EA content."

Great podcasts!

Glad you like them! Tell your friends. ;)

The article on machine learning doesn't discuss the possibility that more people to pursuing machine jobs can have a net negative effect. It's true your venue will generally encourage people that will be more considerate of the long-term and altruistic effects of their research and so will likely have a more positive effect than the average entrant to the field, but if accelerating the development of strong AI is a net negative then that could outweigh the benefit of the average researcher being more altruistic.

Accelerating the development of machine intelligence is not a net negative since it can make the world better and safer at least as much as it is a risk. The longer it takes for AGI algorithms to be developed, the more advanced hardware and datasets there will be to support an uncontrolled takeoff. Also, the longer it takes for AI leaders to develop AGI then the more time there is for other nations and organizations to catch up, sparking more dangerous competitive dynamics. Finally, even if it were a net negative, the marginal impact of one additional AI researcher is tiny whereas the marginal impact of one additional AI safety researcher is large, due to the latter community being much smaller.

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f