This is a linkpost for a paper put out today by the Imperial College "COVID-19 response team", which I thought might provoke interesting discussion. The paper is entitled:

Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand

A summary, copied from the paper, is below:

The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures – so-called non-pharmaceutical interventions (NPIs) – aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission.
Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option.
We show that in the UK and US context, suppression will minimally require a combination of social distancing of the entire population, home isolation of cases and household quarantine of their family members. This may need to be supplemented by school and university closures, though it should be recognised that such closures may have negative impacts on health systems due to increased absenteeism. The major challenge of suppression is that this type of intensive intervention package – or something equivalently effective at reducing transmission – will need to be maintained until a vaccine becomes available (potentially 18 months or more) – given that we predict that transmission will quickly rebound if interventions are relaxed. We show that intermittent social distancing – triggered by trends in disease surveillance – may allow interventions to be relaxed temporarily in relative short time windows, but measures will need to be reintroduced if or when case numbers rebound. Last, while experience in China and now South Korea show that suppression is possible in the short term, it remains to be seen whether it is possible long-term, and whether the social and economic costs of the interventions adopted thus far can be reduced.

9

0
0

Reactions

0
0

More posts like this

Comments4


Sorted by Click to highlight new comments since:

I know there is a death toll associated with economic recessions. Basically, people get poorer and that results in worse mental and physical healthcare. Are there any studies weighing those numbers against these interventions? Seems like a classic QALY problem to me, but I am an amateur in any of the relevant fields.

Also, people keep suggesting to quarantine everyone above 50 or 60 and let everyone else catch the virus to create herd immunity. Is there any scientific validity behind such a course of action? Is it off the table simply because the ”agism” of the virus is only assumed at this point?

Not an expert myself, but the naive calculations that I have seen with regards to herd immunity are incorrect. The precise numbers are just to illustrate the thought process.

"We need 60-70% of people to be immune, people 65 and younger make up 65 % percent of the population, so if they catch it we have achieved herd immunity to protect the elderly".

The flaw with that reasoning is that the immune people need to be essentially randomly distributed in the population. However, the elderly make up a sub population with their own distinct networks, in which the virus can spread after the quarantines are lifted.

It also would probably not work in much (probably the larger part) of the world, where the elderly live together with their families, unless one would relocate them to special made quarantines.

Thanks for posting!

I don't know the context of research that happened before this. Were there any major surprises from this modeling? Did some reputable scientists/agencies think that a single intervention was likely to be sufficient?

Worth pointing out some academics think the parameters used in the Imperial model was too negative based on real world data we have. See Bill Gates's take on it:

Fortunately it appears the parameters used in that model were too negative. The experience in China is the most critical data we have. They did their "shut down" and were able to reduce the number of cases. They are testing widely so they see rebounds immediately and so far there have not been a lot. They avoided widespread infection. The Imperial model does not match this experience. Models are only as good as the assumptions put into them. People are working on models that match what we are seeing more closely and they will become a key tool. A group called Institute for Disease Modelling that I fund is one of the groups working with others on this. ~ Bill Gates from his Reddit AMA
Curated and popular this week
 ·  · 12m read
 · 
Economic growth is a unique field, because it is relevant to both the global development side of EA and the AI side of EA. Global development policy can be informed by models that offer helpful diagnostics into the drivers of growth, while growth models can also inform us about how AI progress will affect society. My friend asked me to create a growth theory reading list for an average EA who is interested in applying growth theory to EA concerns. This is my list. (It's shorter and more balanced between AI/GHD than this list) I hope it helps anyone who wants to dig into growth questions themselves. These papers require a fair amount of mathematical maturity. If you don't feel confident about your math, I encourage you to start with Jones 2016 to get a really strong grounding in the facts of growth, with some explanations in words for how growth economists think about fitting them into theories. Basics of growth These two papers cover the foundations of growth theory. They aren't strictly essential for understanding the other papers, but they're helpful and likely where you should start if you have no background in growth. Jones 2016 Sociologically, growth theory is all about finding facts that beg to be explained. For half a century, growth theory was almost singularly oriented around explaining the "Kaldor facts" of growth. These facts organize what theories are entertained, even though they cannot actually validate a theory – after all, a totally incorrect theory could arrive at the right answer by chance. In this way, growth theorists are engaged in detective work; they try to piece together the stories that make sense given the facts, making leaps when they have to. This places the facts of growth squarely in the center of theorizing, and Jones 2016 is the most comprehensive treatment of those facts, with accessible descriptions of how growth models try to represent those facts. You will notice that I recommend more than a few papers by Chad Jones in this
LintzA
 ·  · 15m read
 · 
Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achieve 25% on its Frontier Math
Omnizoid
 ·  · 5m read
 · 
Edit 1/29: Funding is back, baby!  Crossposted from my blog.   (This could end up being the most important thing I’ve ever written. Please like and restack it—if you have a big blog, please write about it). A mother holds her sick baby to her chest. She knows he doesn’t have long to live. She hears him coughing—those body-wracking coughs—that expel mucus and phlegm, leaving him desperately gasping for air. He is just a few months old. And yet that’s how old he will be when he dies. The aforementioned scene is likely to become increasingly common in the coming years. Fortunately, there is still hope. Trump recently signed an executive order shutting off almost all foreign aid. Most terrifyingly, this included shutting off the PEPFAR program—the single most successful foreign aid program in my lifetime. PEPFAR provides treatment and prevention of HIV and AIDS—it has saved about 25 million people since its implementation in 2001, despite only taking less than 0.1% of the federal budget. Every single day that it is operative, PEPFAR supports: > * More than 222,000 people on treatment in the program collecting ARVs to stay healthy; > * More than 224,000 HIV tests, newly diagnosing 4,374 people with HIV – 10% of whom are pregnant women attending antenatal clinic visits; > * Services for 17,695 orphans and vulnerable children impacted by HIV; > * 7,163 cervical cancer screenings, newly diagnosing 363 women with cervical cancer or pre-cancerous lesions, and treating 324 women with positive cervical cancer results; > * Care and support for 3,618 women experiencing gender-based violence, including 779 women who experienced sexual violence. The most important thing PEPFAR does is provide life-saving anti-retroviral treatments to millions of victims of HIV. More than 20 million people living with HIV globally depend on daily anti-retrovirals, including over half a million children. These children, facing a deadly illness in desperately poor countries, are now going