Hide table of contents

As part of our Governance Recommendations Research ProgramConvergence Analysis has compiled a first-of-its-kind report summarizing the state of the AI regulatory landscape as of May 2024. We provide an overview of existing regulations, focusing on the US, EU, and China as the leading governmental bodies currently developing AI legislation. Additionally, we discuss the relevant context behind each topic and conduct a short analysis.

This series is intended to be a primer for policymakers, researchers, and individuals seeking to develop a high-level overview of the current AI governance space. Our mission is to meaningfully contribute to the advancement of critical & foundational governance policies that will serve to mitigate future risk from AI systems.

You can read the full report on our website: 2024 State of AI Regulatory Landscape

  1. Structure of AI Regulations
  2. AI Evaluation & Risk Assessments
  3. AI Model Registries
  4. AI Incident Reporting
  5. Open-Source AI Models
  6. Cybersecurity of Frontier AI Models
  7. AI Discrimination Requirements
  8. AI Disclosures
  9. AI and Chemical, Biological, Radiological, & Nuclear Hazards

Report Introduction

In the last decade, a growing expert consensus has argued that advanced AI poses numerous threats to society. These threats include widespread job loss, algorithmic bias, increasingly convincing misinformation and disinformation, social manipulation, cybersecurity attacks, and even catastrophic and existential threats from AI-engineered chemical and biological weapons.

Many are urgently calling for legislation and regulation focused on AI to reduce these threats, and governments are responding. In the last year, the US Executive Branch, the People’s Republic of China, and the European Union have enacted hundreds of pages of directives, legislation, and regulation focused on AI and the risks it currently poses and will pose in the near future. In this report, we’ve chosen to focus primarily on these three bodies for a comparative analysis of current regulations. These three aren’t the only examples of existing AI governance efforts, but they are the most prominent and globally influential, with jurisdiction over nearly all leading AI labs and AI infrastructure.

Designing and enacting future governance to tackle the challenges of AI will require a thorough understanding of existing governance and their scope, their strengths, their gaps, and their flaws. To our knowledge, there isn’t currently a detailed comparative analysis of these pieces of governance, nor a topic-by-topic breakdown of their scope and content. In this report, we hope to fill those gaps and provide a solid foundation for future governance recommendations.

We start with an overview of different ways to structure AI policy and how different methods of classifying AI technologies influence the scope and shape of legislation. Then, we’ll proceed topic by topic: we’ll introduce a specific topic of AI governance, explore its context and why it warrants legislation, and then survey the existing US, EU, and Chinese governance on that topic. We’ll conclude each section with our analysis of the current policy, identifying gaps and opportunities, and discuss our policy expectations for the coming 1-5 years.

This report is primarily meant to be read on a topic-by-topic basis, as to be used as a resource for individuals looking to better understand specific topics in AI regulation. It is designed to be consumed in smaller portions rather than read in its entirety in a single session. As this report will gradually become outdated, we also suggest that readers view our most recently updated reports on our website.

We hope that this report provides a firm foundation and reference for policymakers, thought leaders, and other parties interested in getting up to speed on the current state of AI governance.

Comments1


Sorted by Click to highlight new comments since:

This is a really complex space with lots of moving parts; very cool to see how you've compiled/analyzed everything! Haven't finished going through your report yet, but it looks awesome :)

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f
Recent opportunities in AI safety
20
Eva
· · 1m read