Hide table of contents

Written by LW user Kaj_Sotala.

This is part of LessWrong for EA, a LessWrong repost & low-commitment discussion group (inspired by this comment). Each week I will revive a highly upvoted, EA-relevant post from the LessWrong Archives, more or less at random

Excerpt from the post:

1. The Consciousness Researcher and Out-Of-Body Experiences

In his book Consciousness and the Brain, cognitive neuroscientist Stansilas Dehaene writes about scientifically investigating people’s reports of their out-of-body experiences:

… the Swiss neurologist Olaf Blanke[ did a] beautiful series of experiments on out-of-body experiences. Surgery patients occasionally report leaving their bodies during anesthesia. They describe an irrepressible feeling of hovering at the ceiling and even looking down at their inert body from up there. [...]

What kind of brain representation, Blanke asked, underlies our adoption of a specific point of view on the external world? How does the brain assess the body’s location? After investigating many neurological and surgery patients, Blanke discovered that a cortical region in the right temporoparietal junction, when impaired or electrically perturbed, repeatedly caused a sensation of out-of-body transportation. This region is situated in a high-level zone where multiple signals converge: those arising from vision; from the somatosensory and kinesthetic systems (our brain’s map of bodily touch, muscular, and action signals); and from the vestibular system (the biological inertial platform, located in our inner ear, which monitors our head movements). By piecing together these various clues, the brain generates an integrated representation of the body’s location relative to its environment. However, this process can go awry if the signals disagree or become ambiguous as a result of brain damage. Out-of-body flight “really” happens, then—it is a real physical event, but only in the patient’s brain and, as a result, in his subjective experience. The out-of-body state is, by and large, an exacerbated form of the dizziness that we all experience when our vision disagrees with our vestibular system, as on a rocking boat.

Blanke went on to show that any human can leave her body: he created just the right amount of stimulation, via synchronized but delocalized visual and touch signals, to elicit an out-of-body experience in the normal brain. Using a clever robot, he even managed to re-create the illusion in a magnetic resonance imager. And while the scanned person experienced the illusion, her brain lit up in the temporoparietal junction—very close to where the patient’s lesions were located.

We still do not know exactly how this region works to generate a feeling of self-location. Still, the amazing story of how the out-of-body state moved from parapsychological curiosity to mainstream neuroscience gives a message of hope. Even outlandish subjective phenomena can be traced back to their neural origins. The key is to treat such introspections with just the right amount of seriousness. They do not give direct insights into our brain’s inner mechanisms; rather, they constitute the raw material on which a solid science of consciousness can be properly founded.

The naive hypotheses that out-of-body experiences represented the spirit genuinely leaving the body, were incorrect. But they were still pointing to a real observation, namely that there are conditions which create a subjective experience of leaving the body. That observation could then be investigated through scientific means. (Full Post on LW)

Please feel free to,

Comments


No comments on this post yet.
Be the first to respond.
Curated and popular this week
trammell
 ·  · 25m read
 · 
Introduction When a system is made safer, its users may be willing to offset at least some of the safety improvement by using it more dangerously. A seminal example is that, according to Peltzman (1975), drivers largely compensated for improvements in car safety at the time by driving more dangerously. The phenomenon in general is therefore sometimes known as the “Peltzman Effect”, though it is more often known as “risk compensation”.[1] One domain in which risk compensation has been studied relatively carefully is NASCAR (Sobel and Nesbit, 2007; Pope and Tollison, 2010), where, apparently, the evidence for a large compensation effect is especially strong.[2] In principle, more dangerous usage can partially, fully, or more than fully offset the extent to which the system has been made safer holding usage fixed. Making a system safer thus has an ambiguous effect on the probability of an accident, after its users change their behavior. There’s no reason why risk compensation shouldn’t apply in the existential risk domain, and we arguably have examples in which it has. For example, reinforcement learning from human feedback (RLHF) makes AI more reliable, all else equal; so it may be making some AI labs comfortable releasing more capable, and so maybe more dangerous, models than they would release otherwise.[3] Yet risk compensation per se appears to have gotten relatively little formal, public attention in the existential risk community so far. There has been informal discussion of the issue: e.g. risk compensation in the AI risk domain is discussed by Guest et al. (2023), who call it “the dangerous valley problem”. There is also a cluster of papers and works in progress by Robert Trager, Allan Dafoe, Nick Emery-Xu, Mckay Jensen, and others, including these two and some not yet public but largely summarized here, exploring the issue formally in models with multiple competing firms. In a sense what they do goes well beyond this post, but as far as I’m aware none of t
LewisBollard
 ·  · 6m read
 · 
> Despite the setbacks, I'm hopeful about the technology's future ---------------------------------------- It wasn’t meant to go like this. Alternative protein startups that were once soaring are now struggling. Impact investors who were once everywhere are now absent. Banks that confidently predicted 31% annual growth (UBS) and a 2030 global market worth $88-263B (Credit Suisse) have quietly taken down their predictions. This sucks. For many founders and staff this wasn’t just a job, but a calling — an opportunity to work toward a world free of factory farming. For many investors, it wasn’t just an investment, but a bet on a better future. It’s easy to feel frustrated, disillusioned, and even hopeless. It’s also wrong. There’s still plenty of hope for alternative proteins — just on a longer timeline than the unrealistic ones that were once touted. Here are three trends I’m particularly excited about. Better products People are eating less plant-based meat for many reasons, but the simplest one may just be that they don’t like how they taste. “Taste/texture” was the top reason chosen by Brits for reducing their plant-based meat consumption in a recent survey by Bryant Research. US consumers most disliked the “consistency and texture” of plant-based foods in a survey of shoppers at retailer Kroger.  They’ve got a point. In 2018-21, every food giant, meat company, and two-person startup rushed new products to market with minimal product testing. Indeed, the meat companies’ plant-based offerings were bad enough to inspire conspiracy theories that this was a case of the car companies buying up the streetcars.  Consumers noticed. The Bryant Research survey found that two thirds of Brits agreed with the statement “some plant based meat products or brands taste much worse than others.” In a 2021 taste test, 100 consumers rated all five brands of plant-based nuggets as much worse than chicken-based nuggets on taste, texture, and “overall liking.” One silver lining
 ·  · 6m read
 · 
Cross-posted from Otherwise. Most people in EA won't find these arguments new. Apologies for leaving out animal welfare entirely for the sake of simplicity. Last month, Emma Goldberg wrote a NYT piece contrasting effective altruism with approaches that refuse to quantify meaningful experiences. The piece indicates that effective altruism is creepily numbers-focused. Goldberg asks “what if charity shouldn’t be optimized?” The egalitarian answer Dylan Matthews gives a try at answering a question in the piece: “How can anyone put a numerical value on a holy space” like Notre Dame cathedral? For the $760 million spent restoring the cathedral, he estimates you could prevent 47,500 deaths from malaria. “47,500 people is about five times the population of the town I grew up in. . . . It’s useful to imagine walking down Main Street, stopping at each table at the diner Lou’s, shaking hands with as many people as you can, and telling them, ‘I think you need to die to make a cathedral pretty.’ And then going to the next town over and doing it again, and again, until you’ve told 47,500 people why they have to die.” Who prefers magnificence? Goldberg’s article draws a lot on author Amy Schiller’s plea to focus charity on “magnificence” rather than effectiveness. Some causes “make people’s lives feel meaningful, radiant, sacred. Think nature conservancies, cultural centers and places of worship. These are institutions that lend life its texture and color, and not just bare bones existence.” But US arts funding goes disproportionately to the most expensive projects, with more than half of the funding going to the most expensive 2% of projects. These are typically museums, classical music groups, and performing arts centers. When donors prioritize giving to communities they already have ties to, the money stays in richer communities. Some areas have way more rich people than others. New York City has 119 billionaires; most African countries have none. Unsurprisingly, Schill