Hide table of contents

TLDR: Feel free to download or make a copy of this Sheets to calculate the parameters of uniform, normal, loguniform, lognormal, pareto and logistic distributions, including their mean, median and mode, based on the values of 2 quantiles.

Scenario

Given a random variable  with cumulative distribution function , and two values  and  respecting the quantiles  and , what are the parameters of the underlying distribution? Answering this question is relevant to determine the expected value (mean) of .

As a concrete example,  could represent the cost-effectiveness distribution of an intervention whose 10th and 90th percentiles are 5 and 15. For this case, the inputs would be:

  •  and .
  •  and .

Distribution parameters

The relationship between the values and quantiles of  is described by:

The parameters which define the distributions could be determined solving a system of 2 equations for each of the above relationships:

  • For a uniform distribution:
  • For a normal distribution:
  • For a loguniform or lognormal distribution:
    •  follows a uniform or normal distribution.
    • This means the parameters referring to the logarithm of  could be calculated replacing  and  by  and .
  • For a pareto distribution:
    • .
    • .
  • For a logistic distribution:
    • .
    • .

Feel free to download or make a copy of this Sheets to calculate the parameters of uniform, normal, loguniform, lognormal, pareto and logistic distributions, based on the above formulas. I have also included formulas for the mean, median and mode of all these distributions.

  1. ^

    The standard normal distribution has mean 0, and standard deviation 1. The quantile function is the inverse of the cumulative distribution function. The quantile function of the normal distribution could be calculated via NORMINV in Sheets, and scipy.stats.norm.ppf in Python.

Comments7


Sorted by Click to highlight new comments since:

One can very often avoid running Monte Carlo simulations, at least ones with more than 1 distribution, by estimating the means of input distributions using the sheet. For example, to determine the expected value of Z = X*Y if X and Y are independent distributions, E(Z) = E(X)*E(Y), and one can use the sheet to calculate each of these factors (if both X and Y follow a distribution there).

Useful stuff! I was working on something similar months ago and ended up eyeballing things.

I think the links to the sheets are broken though, they just link to this page

Sorry, and thanks! They are working now.

The hyperlink on the word "this" (in both instances) is broken. I don't see how to get to the calculator.

Sorry, and thanks! They are working now.

Thank you for this! I had been trying to solve this exact problem recently, and I wasn't sure if I was doing it right. And this spreadsheet is much more convenient than the way I was doing it.

Great to know that you found it useful!

Curated and popular this week
Paul Present
 ·  · 28m read
 · 
Note: I am not a malaria expert. This is my best-faith attempt at answering a question that was bothering me, but this field is a large and complex field, and I’ve almost certainly misunderstood something somewhere along the way. Summary While the world made incredible progress in reducing malaria cases from 2000 to 2015, the past 10 years have seen malaria cases stop declining and start rising. I investigated potential reasons behind this increase through reading the existing literature and looking at publicly available data, and I identified three key factors explaining the rise: 1. Population Growth: Africa's population has increased by approximately 75% since 2000. This alone explains most of the increase in absolute case numbers, while cases per capita have remained relatively flat since 2015. 2. Stagnant Funding: After rapid growth starting in 2000, funding for malaria prevention plateaued around 2010. 3. Insecticide Resistance: Mosquitoes have become increasingly resistant to the insecticides used in bednets over the past 20 years. This has made older models of bednets less effective, although they still have some effect. Newer models of bednets developed in response to insecticide resistance are more effective but still not widely deployed.  I very crudely estimate that without any of these factors, there would be 55% fewer malaria cases in the world than what we see today. I think all three of these factors are roughly equally important in explaining the difference.  Alternative explanations like removal of PFAS, climate change, or invasive mosquito species don't appear to be major contributors.  Overall this investigation made me more convinced that bednets are an effective global health intervention.  Introduction In 2015, malaria rates were down, and EAs were celebrating. Giving What We Can posted this incredible gif showing the decrease in malaria cases across Africa since 2000: Giving What We Can said that > The reduction in malaria has be
Ronen Bar
 ·  · 10m read
 · 
"Part one of our challenge is to solve the technical alignment problem, and that’s what everybody focuses on, but part two is: to whose values do you align the system once you’re capable of doing that, and that may turn out to be an even harder problem", Sam Altman, OpenAI CEO (Link).  In this post, I argue that: 1. "To whose values do you align the system" is a critically neglected space I termed “Moral Alignment.” Only a few organizations work for non-humans in this field, with a total budget of 4-5 million USD (not accounting for academic work). The scale of this space couldn’t be any bigger - the intersection between the most revolutionary technology ever and all sentient beings. While tractability remains uncertain, there is some promising positive evidence (See “The Tractability Open Question” section). 2. Given the first point, our movement must attract more resources, talent, and funding to address it. The goal is to value align AI with caring about all sentient beings: humans, animals, and potential future digital minds. In other words, I argue we should invest much more in promoting a sentient-centric AI. The problem What is Moral Alignment? AI alignment focuses on ensuring AI systems act according to human intentions, emphasizing controllability and corrigibility (adaptability to changing human preferences). However, traditional alignment often ignores the ethical implications for all sentient beings. Moral Alignment, as part of the broader AI alignment and AI safety spaces, is a field focused on the values we aim to instill in AI. I argue that our goal should be to ensure AI is a positive force for all sentient beings. Currently, as far as I know, no overarching organization, terms, or community unifies Moral Alignment (MA) as a field with a clear umbrella identity. While specific groups focus individually on animals, humans, or digital minds, such as AI for Animals, which does excellent community-building work around AI and animal welfare while
Max Taylor
 ·  · 9m read
 · 
Many thanks to Constance Li, Rachel Mason, Ronen Bar, Sam Tucker-Davis, and Yip Fai Tse for providing valuable feedback. This post does not necessarily reflect the views of my employer. Artificial General Intelligence (basically, ‘AI that is as good as, or better than, humans at most intellectual tasks’) seems increasingly likely to be developed in the next 5-10 years. As others have written, this has major implications for EA priorities, including animal advocacy, but it’s hard to know how this should shape our strategy. This post sets out a few starting points and I’m really interested in hearing others’ ideas, even if they’re very uncertain and half-baked. Is AGI coming in the next 5-10 years? This is very well covered elsewhere but basically it looks increasingly likely, e.g.: * The Metaculus and Manifold forecasting platforms predict we’ll see AGI in 2030 and 2031, respectively. * The heads of Anthropic and OpenAI think we’ll see it by 2027 and 2035, respectively. * A 2024 survey of AI researchers put a 50% chance of AGI by 2047, but this is 13 years earlier than predicted in the 2023 version of the survey. * These predictions seem feasible given the explosive rate of change we’ve been seeing in computing power available to models, algorithmic efficiencies, and actual model performance (e.g., look at how far Large Language Models and AI image generators have come just in the last three years). * Based on this, organisations (both new ones, like Forethought, and existing ones, like 80,000 Hours) are taking the prospect of near-term AGI increasingly seriously. What could AGI mean for animals? AGI’s implications for animals depend heavily on who controls the AGI models. For example: * AGI might be controlled by a handful of AI companies and/or governments, either in alliance or in competition. * For example, maybe two government-owned companies separately develop AGI then restrict others from developing it. * These actors’ use of AGI might be dr