Hide table of contents

Redwood Research is running another iteration of MLAB, our bootcamp aimed at helping people who are interested in AI alignment learn about machine learning, with a focus on ML skills and concepts that are relevant to doing the kinds of alignment research that we think seem most leveraged for reducing AI x-risk.  We co-organized the last iteration of the bootcamp with Lightcone in January, and there were 28 participants. The program was rated highly (see below for more), and several participants are now working full-time on alignment. We expect to start on Aug 15 but might push it back or forward by a week depending on applicant availability.

Apply here by May 27.

We’re expecting to have space for about 40 participants. We’ll pay for housing, travel, and food, as well as salaries for the TAs. We will help you get visas to travel to the US for the bootcamp.

We’re now accepting applications for participants and TAs. TAs are expected to either know this material already or have a month free before MLAB to study all the content.

Last time the schedule was roughly the following:

  • Prep work: Pytorch array programming
  • Week 1: Pytorch, optimization
    • Implement a renderer in pytorch, as an exercise in mathematical array programming
    • Implement ResNet from scratch in pytorch, implementing all the layers from scratch and loading weights from a trained model.
    • Implement interpretability techniques on the ResNet.
    • Implement SGD and other local optimization algorithms, run remote hyperparameter searches on a simple architecture
    • Implement a simple clone of some of Pytorch, with particular focus on the implementation of backpropagation
    • (Optional) CUDA programming day–write various CUDA kernels, see how close to the performance of Pytorch’s kernels you can get
  • Week 2: Transformers
    • Implement BERT from scratch, load weights from the real pretrained BERT
    • Implement GPT-2, implement beam search
    • Fine tune BERT on classification, fine-tune GPT-2 on some specific corpus
    • Look at various interpretability techniques on GPT-2
    • Data-parallel training
  • Week 3
    • Pipeline parallelism
    • Tensor parallelism
    • Deep RL (DQN, policy gradient)
    • RL algorithms on language models
    • More transformer interpretability
    • (Optional) ELK day
  • Week 4: Optional final projects week, Q&As with various alignment researchers

This time, we’ll probably have more systematic transformer interpretability content, because we’ve spent a lot of time since MLAB doing our own transformer interpretability research and have a bunch more opinions now. We might also have more systematic content on various relevant math. I’m also hoping that we’ll be able to cover content more efficiently as a result of experience gained from running the program the first time.

Past participants report that MLAB was time-consuming; we strongly recommend against trying to juggle other commitments concurrently. About 8 hours a day, 5 or 6 (if you participate in the optional day) days a week will be spent on pair programming, in addition to daily lectures and readings. There is a lot of content packed into each day; not everyone will finish every part of the curriculum. We aim to create a learning environment that is focused but not frantic; we’d rather have you understand the material deeply than finish 100% of the day’s content.  

The program is aimed at people who are already strong programmers who are comfortable with about one year’s worth of university level applied math (e.g. you should know what eigenvalues and eigenvectors of a matrix are, and you should know basic vector calculus; in this course you’ll have to think about Jacobian matrices and make heavy use of tensor diagram notation, so you should be able to pick up both of those pretty fast).

We expect that about half the attendees will be current students (either undergrad or grad students) and half will be professionals.

If you applied to the first cohort and were not accepted, consider applying again. We had many more applicants than spots last time. 

Last time, we ended up hiring three people who attended MLAB as participants (as well as giving another person an offer that they turned down for a non-alignment EA job), and hired three people who had worked as TAs. Note that about ⅔ of attendees last time were students who were unavailable for immediate employment.

My guess is that MLAB is a pretty great opportunity for people who want to become more familiar with the concepts and practical details related to ML; I think that MLAB is a good use of time for many people who don’t plan to do technical alignment research long term but who intend to do theoretical alignment research or work on other things where being knowledgeable about ML techniques is useful.

TA-ing MLAB is a good opportunity for people with more prior knowledge of this material to connect with Redwood Research and the broader Bay Area alignment community, reinforce their understanding of the curriculum material, and movement-build by teaching others. It also pays competitively. 

Highlights from the end-of-MLAB survey last time

MLAB was well received:

When we asked participants what they were surprised by, major themes were:

  • People thought it was more useful than they expected.
    • Many people were surprised by how much they liked the focus on implementing things.
    • Several people were concerned that their ML background was too strong or too weak, and were pleasantly surprised by the extent to which the content was valuable anyway.
  • People were surprised that there wasn’t more content on alignment in the main curriculum. The content is basically all related to understanding and working with ML systems. This focus is because I think that doing alignment research with ML systems basically just requires the same skills as understanding these systems more generally, and so you might as well just study the systems directly and apply this knowledge to alignment projects later (except that I think that emphasizing interpretability throughout is actually a pretty good way of learning to understand the systems better in a way that I expect to be useful for a variety of directions of research). There were a variety of Q&As with alignment researchers and quite a lot of casual discussion about alignment.

Logistics

The bootcamp takes place at Constellation, a shared office space in Berkeley for people working on longtermist projects. People from several longtermist organizations often work from the space, including people from Open Philanthropy, MIRI, Redwood Research, the Alignment Research Center, and more.

As a participant, you’d attend semi-regular communal lunches and events at Constellation and have a great opportunity to make friends and connections. 

If you join the bootcamp, we’ll pay for travel to Berkeley (for both US and international participants), housing and food.

FAQ (mostly copied from last time)

What if I can’t make these dates? Will there be more bootcamps in future?

Maybe! We encourage you to submit an application even if you can’t make those dates, and it is very much on the table to run future bootcamps like these if there’s an interest and the first one goes well.

How does your curriculum differ from the curriculum other people might have built?

It’s way more focused on learning by implementing small things based on a carefully constructed curriculum, rather than e.g. reading papers or trying to replicate whole papers at once. This difference in focus is mostly because I (Buck) believe that focusing first on these skills makes it much faster to learn, because you get way faster feedback loops. It’s also probably partially due to some of my beliefs about how to do ML research which are slightly unusual among ML people (though many of the ML people I’ve talked to mostly agree with me).

How different is this curriculum from the optimal curriculum for learning the skills required to work on ML stuff at places other than Redwood? 

In Buck’s opinion not that different.

What’s the application process?

You fill out the form and then do some online tests then talk to one of us.

How useful is this bootcamp if I’m already somewhat experienced with ML? 

I (Buck) would guess that it’s pretty robust to being experienced. I personally feel like I learned some details I’m glad to know from preparing the curriculum, and I’d appreciate having an opportunity to drill a bunch of the skills taught. If you read the curriculum listed above and your response is “yawn, I already know all these things or don’t care about knowing them”, then probably you don’t want to do this bootcamp. I personally enjoyed App Academy quite a lot despite being more experienced than the other students. As I noted above, many people mentioned in the final survey that they were worried that they had too much background and were pleasantly surprised by the extent to which the content was useful anyway.

Am I eligible if I’m not sure I want to do applied ML long-term, because maybe I should do some other kind of work (eg non-applied alignment work, or movement building) instead? 

Yes.

Am I eligible if I don’t plan to work in effective altruism, in some way? 

Feel free to apply, but the selection process will strongly favour participants who want to work on AI alignment or other parts of effective altruism. 

How does this interact with other summer activities?

This overlaps with MLSS by a single week; you’re able to skip that last week of MLSS if necessary, which means that you can do both. You’ll have to sort out other conflicts yourself.

Apply now

You can apply here. Feel free to send questions to Max Nadeau at max@rdwrs.com. Applications close on May 27.

Comments7


Sorted by Click to highlight new comments since:

As a fellow graduate of App Academy, I can certainly speak to and strongly recommend the full-time immersive workshop approach to learning a huge amount in a short time. That said, like many people I personally don't have the free time to focus on it full-time just yet. Any chance the curriculum (github repo?) could be made available for asynchronous solo progress?

I'm thinking of organizing an unofficial version of this in Finland. So this would be nice for sure :)

Hey,

Is the material available somewhere so we can study it without the official course?

Thx

Edit: No, the material is not publicly available

If someone doesn't have much prior ML experience, can they still be a TA, assuming they have a month to dedicate to learning the curriculum before the program starts?

If yes, would the TA's learning during that month be self-guided? Or would it take place in a structure/environment similar to the one the students will experience?

It is possible but unlikely that such a person would be a TA. Someone with little prior ML experience would be a better fit as a participant.

This sounds really exciting!

I'm a bit unclear on the below point:

I think that MLAB is a good use of time for many people who don’t plan to do technical alignment research long term but who intend to do theoretical alignment research or work on other things where being knowledgeable about ML techniques is useful.

Do you mean you don't think MLAB would be a good use of time for people who do "plan to do technical alignment research long term"?

We intended that sentence to be read as: "In addition to people who plan on doing technical alignment, MLAB can be valuable to other sorts of people (e.g. theoretical researchers)".

Curated and popular this week
Paul Present
 ·  · 28m read
 · 
Note: I am not a malaria expert. This is my best-faith attempt at answering a question that was bothering me, but this field is a large and complex field, and I’ve almost certainly misunderstood something somewhere along the way. Summary While the world made incredible progress in reducing malaria cases from 2000 to 2015, the past 10 years have seen malaria cases stop declining and start rising. I investigated potential reasons behind this increase through reading the existing literature and looking at publicly available data, and I identified three key factors explaining the rise: 1. Population Growth: Africa's population has increased by approximately 75% since 2000. This alone explains most of the increase in absolute case numbers, while cases per capita have remained relatively flat since 2015. 2. Stagnant Funding: After rapid growth starting in 2000, funding for malaria prevention plateaued around 2010. 3. Insecticide Resistance: Mosquitoes have become increasingly resistant to the insecticides used in bednets over the past 20 years. This has made older models of bednets less effective, although they still have some effect. Newer models of bednets developed in response to insecticide resistance are more effective but still not widely deployed.  I very crudely estimate that without any of these factors, there would be 55% fewer malaria cases in the world than what we see today. I think all three of these factors are roughly equally important in explaining the difference.  Alternative explanations like removal of PFAS, climate change, or invasive mosquito species don't appear to be major contributors.  Overall this investigation made me more convinced that bednets are an effective global health intervention.  Introduction In 2015, malaria rates were down, and EAs were celebrating. Giving What We Can posted this incredible gif showing the decrease in malaria cases across Africa since 2000: Giving What We Can said that > The reduction in malaria has be
Ronen Bar
 ·  · 10m read
 · 
"Part one of our challenge is to solve the technical alignment problem, and that’s what everybody focuses on, but part two is: to whose values do you align the system once you’re capable of doing that, and that may turn out to be an even harder problem", Sam Altman, OpenAI CEO (Link).  In this post, I argue that: 1. "To whose values do you align the system" is a critically neglected space I termed “Moral Alignment.” Only a few organizations work for non-humans in this field, with a total budget of 4-5 million USD (not accounting for academic work). The scale of this space couldn’t be any bigger - the intersection between the most revolutionary technology ever and all sentient beings. While tractability remains uncertain, there is some promising positive evidence (See “The Tractability Open Question” section). 2. Given the first point, our movement must attract more resources, talent, and funding to address it. The goal is to value align AI with caring about all sentient beings: humans, animals, and potential future digital minds. In other words, I argue we should invest much more in promoting a sentient-centric AI. The problem What is Moral Alignment? AI alignment focuses on ensuring AI systems act according to human intentions, emphasizing controllability and corrigibility (adaptability to changing human preferences). However, traditional alignment often ignores the ethical implications for all sentient beings. Moral Alignment, as part of the broader AI alignment and AI safety spaces, is a field focused on the values we aim to instill in AI. I argue that our goal should be to ensure AI is a positive force for all sentient beings. Currently, as far as I know, no overarching organization, terms, or community unifies Moral Alignment (MA) as a field with a clear umbrella identity. While specific groups focus individually on animals, humans, or digital minds, such as AI for Animals, which does excellent community-building work around AI and animal welfare while
Max Taylor
 ·  · 9m read
 · 
Many thanks to Constance Li, Rachel Mason, Ronen Bar, Sam Tucker-Davis, and Yip Fai Tse for providing valuable feedback. This post does not necessarily reflect the views of my employer. Artificial General Intelligence (basically, ‘AI that is as good as, or better than, humans at most intellectual tasks’) seems increasingly likely to be developed in the next 5-10 years. As others have written, this has major implications for EA priorities, including animal advocacy, but it’s hard to know how this should shape our strategy. This post sets out a few starting points and I’m really interested in hearing others’ ideas, even if they’re very uncertain and half-baked. Is AGI coming in the next 5-10 years? This is very well covered elsewhere but basically it looks increasingly likely, e.g.: * The Metaculus and Manifold forecasting platforms predict we’ll see AGI in 2030 and 2031, respectively. * The heads of Anthropic and OpenAI think we’ll see it by 2027 and 2035, respectively. * A 2024 survey of AI researchers put a 50% chance of AGI by 2047, but this is 13 years earlier than predicted in the 2023 version of the survey. * These predictions seem feasible given the explosive rate of change we’ve been seeing in computing power available to models, algorithmic efficiencies, and actual model performance (e.g., look at how far Large Language Models and AI image generators have come just in the last three years). * Based on this, organisations (both new ones, like Forethought, and existing ones, like 80,000 Hours) are taking the prospect of near-term AGI increasingly seriously. What could AGI mean for animals? AGI’s implications for animals depend heavily on who controls the AGI models. For example: * AGI might be controlled by a handful of AI companies and/or governments, either in alliance or in competition. * For example, maybe two government-owned companies separately develop AGI then restrict others from developing it. * These actors’ use of AGI might be dr