Hide table of contents

The Assignment:

(4 hours) Write an Economist-style explainer article on how LLMs work. You’ve just started as an AI reporter at The Economist, and your editor’s realised there’s no good Economist Explains style piece on how LLMs work. They’ve asked you to write one. It should be 500 words, and in the style of other Economist Explains pieces. 

Examples: Economist explainer on biological weapons; Economist explainer on diffusion models; FT explainer on transformers.

Thank you to Shakeel Hashim for feedback! Shakeel previously worked at The Economist as an editor. 

Since OpenAI released ChatGPT in November 2022, large language models (LLMs) have gained international attention. A language model is a piece of AI software designed for tasks like translation, speech recognition, or—in the case of ChatGPT—conversations with humans. Language models, and even chatbots, are not new. In the 1960s, the first chatbot, ELIZA, was developed at MIT. ELIZA’s programmer had to write down a precise set of instructions for the chatbot to follow, including canned responses like “Tell me more about such feelings.” Modern language models, by contrast, must learn the structure of language from scratch by poring over internet text and compressing this knowledge across billions of numbers, or ‘weights’. In this way, these language models are ‘large’.

When an LLM receives input text from a user, the words are sliced up into ‘tokens’, and these sub-words are ‘embedded’ into numbers. The numbers representing the user’s input are then passed through the weights of the model to produce the first token of the model’s output. By iterating this process, the model generates a complete response. To find a set of weights capable of performing this powerful task, engineers ‘pre-train’ the model on vast quantities of human text. When the model outputs a token that does not match the next token in the training data, the model’s weights are nudged in the direction that would have produced the correct token. In a process known as Reinforcement Learning from Human Feedback, the pre-trained model is then molded into a ‘helpful, harmless, and honest’ assistant by training on feedback from contracted data labelers. The result is a modern chatbot that answers questions, fulfills requests, and occasionally hallucinates false information.

To generate text, an LLM is tasked with predicting what a human would have said in that context. For years, AI researchers struggled to get quality predictions out of language models: the models would fail to refer back to earlier information and miss important pieces of context. In 2017, a team of researchers at Google unveiled the transformer architecture, ushering in the current LLM era. By allowing a model to pay more or less ‘attention’ to previous words in a sentence, the transformer improved the next-token predictions of language models, and therefore their ability to generate realistic text.

In a Faustian exchange for this breakthrough, AI developers have paid enormous sums for the resources to train LLMs. In addition to huge volumes of data, the other major input needed to produce LLMs is training time on datacenter computers, or ‘compute.’ The compute for GPT-4 cost OpenAI over $100 million, according to CEO Sam Altman, who is reportedly trying to raise up to $7 trillion dollars for training models at OpenAI and elsewhere.

Just a placeholder! Alpha Star / Zero are not language models, and this is not a true log scale.

The capital-intensive nature of LLM production has prompted a shift in Silicon Valley, where lean startups are used to racing ahead of tech giants like Microsoft. In the LLM era, AI startups are hungry for capital, and their bloated predecessors are desperate for exposure to the AI boom. This double coincidence of wants has given rise to the current slate of partnerships: Microsoft investing in OpenAI and Mistral, Amazon investing in Anthropic, and Google acquiring DeepMind.

While its price tag is well known, training a large language model comes with a more subtle cost for its programmers: transparency. Since older language models like ELIZA ran on instructions that had been written by hand, their outputs could be traced back to the responsible lines of code, which could then be edited. LLMs, on the other hand, are composed of nothing but their weights. When ChatGPT hallucinates false information, its programmers cannot isolate the responsible weights because a dizzying number of them contribute in varying degrees to everything the model says. As language models grow larger, their inner workings may continue to defy human understanding.

17

0
0

Reactions

0
0
No comments on this post yet.
Be the first to respond.
Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f