The New Zealand government has recently introduced new legislation to New Zealand’s Parliament to update the regulation of gene technology.

One aspect of the proposed legislation that is likely to be of interest to the Effective Altruism community is that it would enable the creation of regulations for nucleic acid synthesis screening and benchtop nucleic acid synthesis equipment. 

Judging by the current wording of the legislation, should these regulations be developed: 

Read NZ's Gene Technology Bill
  • New Zealand-based providers of synthetic nucleic acid would be required to screen customers and their orders, and
  • New Zealand-based manufacturers of benchtop nucleic acid synthesis equipment would be required to screen customers and to integrate into their equipment the ability to screen customer requests.

To my knowledge, these regulations would make New Zealand the first country in the world to legislatively require nucleic acid screening.

For those interested in having their say on this legislation and writing in support of these regulations, the public comment period is currently open and closes in 11 days at 11:59 PM on Monday, 17 February 2025 (New Zealand time).

Submit Your Comment

13

1
0

Reactions

1
0
Comments1


Sorted by Click to highlight new comments since:

So good to see my country of birth positively represented on the forum. Ka pai Aotearoa!

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Sam Anschell
 ·  · 6m read
 · 
*Disclaimer* I am writing this post in a personal capacity; the opinions I express are my own and do not represent my employer. I think that more people and orgs (especially nonprofits) should consider negotiating the cost of sizable expenses. In my experience, there is usually nothing to lose by respectfully asking to pay less, and doing so can sometimes save thousands or tens of thousands of dollars per hour. This is because negotiating doesn’t take very much time[1], savings can persist across multiple years, and counterparties can be surprisingly generous with discounts. Here are a few examples of expenses that may be negotiable: For organizations * Software or news subscriptions * Of 35 corporate software and news providers I’ve negotiated with, 30 have been willing to provide discounts. These discounts range from 10% to 80%, with an average of around 40%. * Leases * A friend was able to negotiate a 22% reduction in the price per square foot on a corporate lease and secured a couple months of free rent. This led to >$480,000 in savings for their nonprofit. Other negotiable parameters include: * Square footage counted towards rent costs * Lease length * A tenant improvement allowance * Certain physical goods (e.g., smart TVs) * Buying in bulk can be a great lever for negotiating smaller items like covid tests, and can reduce costs by 50% or more. * Event/retreat venues (both venue price and smaller items like food and AV) * Hotel blocks * A quick email with the rates of comparable but more affordable hotel blocks can often save ~10%. * Professional service contracts with large for-profit firms (e.g., IT contracts, office internet coverage) * Insurance premiums (though I am less confident that this is negotiable) For many products and services, a nonprofit can qualify for a discount simply by providing their IRS determination letter or getting verified on platforms like TechSoup. In my experience, most vendors and companies
 ·  · 4m read
 · 
Forethought[1] is a new AI macrostrategy research group cofounded by Max Dalton, Will MacAskill, Tom Davidson, and Amrit Sidhu-Brar. We are trying to figure out how to navigate the (potentially rapid) transition to a world with superintelligent AI systems. We aim to tackle the most important questions we can find, unrestricted by the current Overton window. More details on our website. Why we exist We think that AGI might come soon (say, modal timelines to mostly-automated AI R&D in the next 2-8 years), and might significantly accelerate technological progress, leading to many different challenges. We don’t yet have a good understanding of what this change might look like or how to navigate it. Society is not prepared. Moreover, we want the world to not just avoid catastrophe: we want to reach a really great future. We think about what this might be like (incorporating moral uncertainty), and what we can do, now, to build towards a good future. Like all projects, this started out with a plethora of Google docs. We ran a series of seminars to explore the ideas further, and that cascaded into an organization. This area of work feels to us like the early days of EA: we’re exploring unusual, neglected ideas, and finding research progress surprisingly tractable. And while we start out with (literally) galaxy-brained schemes, they often ground out into fairly specific and concrete ideas about what should happen next. Of course, we’re bringing principles like scope sensitivity, impartiality, etc to our thinking, and we think that these issues urgently need more morally dedicated and thoughtful people working on them. Research Research agendas We are currently pursuing the following perspectives: * Preparing for the intelligence explosion: If AI drives explosive growth there will be an enormous number of challenges we have to face. In addition to misalignment risk and biorisk, this potentially includes: how to govern the development of new weapons of mass destr