Also see paper and results compilation video!

Today, we published "Open-Ended Learning Leads to Generally Capable Agents," a preprint detailing our first steps to train an agent capable of playing many different games without needing human interaction data. ... The result is an agent with the ability to succeed at a wide spectrum of tasks — from simple object-finding problems to complex games like hide and seek and capture the flag, which were not encountered during training. We find the agent exhibits general, heuristic behaviours such as experimentation, behaviours that are widely applicable to many tasks rather than specialised to an individual task.

...

The neural network architecture we use provides an attention mechanism over the agent’s internal recurrent state — helping guide the agent’s attention with estimates of subgoals unique to the game the agent is playing. We’ve found this goal-attentive agent (GOAT) learns more generally capable policies.

...

Playing roughly 700,000 unique games in 4,000 unique worlds within XLand, each agent in the final generation experienced 200 billion training steps as a result of 3.4 million unique tasks. At this time, our agents have been able to participate in every procedurally generated evaluation task except for a handful that were impossible even for a human. And the results we’re seeing clearly exhibit general, zero-shot behaviour across the task space — with the frontier of normalised score percentiles continually improving.

Looking qualitatively at our agents, we often see general, heuristic behaviours emerge — rather than highly optimised, specific behaviours for individual tasks. Instead of agents knowing exactly the “best thing” to do in a new situation, we see evidence of agents experimenting and changing the state of the world until they’ve achieved a rewarding state. We also see agents rely on the use of other tools, including objects to occlude visibility, to create ramps, and to retrieve other objects. Because the environment is multiplayer, we can examine the progression of agent behaviours while training on held-out social dilemmas, such as in a game of “chicken”. As training progresses, our agents appear to exhibit more cooperative behaviour when playing with a copy of themselves. Given the nature of the environment, it is difficult to pinpoint intentionality — the behaviours we see often appear to be accidental, but still we see them occur consistently.

My hot take: This seems like a somewhat big deal to me. It's what I would have predicted, but that's scary, given my timelines. I haven't read the paper itself yet but I look forward to seeing more numbers and scaling trends and attempting to extrapolate... When I do I'll leave a comment with my thoughts.

EDIT: My warm take: The details in the paper back up the claims it makes in the title and abstract. This is the GPT-1 of agent/goal-directed AGI; it is the proof of concept. Two more papers down the line (and a few OOMs more compute), and we'll have the agent/goal-directed AGI equivalent of GPT-3. Scary stuff.

56

1
0

Reactions

1
0
Comments10


Sorted by Click to highlight new comments since:

You probably want the link at the top of this post to go directly to the Deepmind paper page, instead of the LessWrong redirect-URL for the link. I.e. the current link is:

https://www.lesswrong.com/out?url=https%3A%2F%2Fdeepmind.com%2Fblog%2Farticle%2Fgenerally-capable-agents-emerge-from-open-ended-play

When it probably should be:

https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play

Oops, sorry thanks!

Is there already a handy way to compare computation costs that went into training? E.g. compared to GPT3, AlphaZero, etc.?

I would love to know! If anyone finds out how many PF-DAYs or operations or whatever were used to train this stuff, I'd love to hear it. (Alternatively: How much money was spent on the compute, or the hardware.)

For what it's worth, I've mostly not been interested in AI safety/alignment (and am still mostly not), but this also seems like a pretty big deal to me. I haven't actually read the details, but this is basically not "narrow" AI anymore, right?

I guess the expressions "narrow" and "general" are a bit unfortunate, since I don't really want to call this either. I would want to reserve the term AGI for AI that can do at least this, but can also reason generally and abstractly, and excels at one-shot learning (although there are specific networks designed for one-shot learning, like Siamese networks. Actually, why aren't similar networks used more often,even as subnetworks?).

My take is that indeed, we now have AGI -- but it's really shitty AGI, not even close to human-level. (GPT-3 was another example of this; pretty general, but not human-level.) It seems that we now have the know-how to train a system that combines all the abilities and knowledge of GPT-3 with all the abilities and knowledge of these game-playing agents. Such a system would qualify as AGI, but not human-level AGI. The question is how long it'll take, and how much money (to make it bigger, train for longer) to get to human-level or something dangerously powerful at least.

It seems like this could extend naturally to cooperative inverse reinforcement learning.  Basically, the real world is a new game the AI has to play, and humans decide the reward subjectively (rather than with some explicit rule). The AI has developed some general competence beforehand by playing games, but it has to learn the new rules in the real world, which are not explicit.

My hot take: This seems like a somewhat big deal to me. It's what I would have predicted, but that's scary, given my timelines

Might be confirmation bias. But is it.

I did say it was a hot take. :D If I think of more sophisticated things to say I'll say them. 

 

AGI confirmed? 😬

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f