Hide table of contents

Many kinds of work one could do to make AI go better and a grab-bag of other career considerations

I recently found myself confused about what I’d like to work on. So, I made an overview with the possible options for what to work on to make AI go well. I thought I’d share it in case it’s helpful for other people. Since I made this overview for my own career deliberations, it is tailored for myself and not necessarily complete. That said, I tried to be roughly comprehensive, so feel free to point out options I’m missing. I redacted some things but didn’t edit the doc in other ways to make it more comprehensible to others. In case you’re interested, I explain a lot of the areas in the “Humans in control” and the “Misalignment” worlds here and to some extent here.

What areas could one work on? What endpoints or intermediary points could one aim for?

Note that I redacted a bunch of names in “Who’s working on this” just because I didn’t want to bother asking them and I wasn’t sure they had publicly talked about it yet, not because of anything else.

“?” behind a name or org means I don’t know if they actually work on the thing (but you could probably find out with a quick google!)

World it helpsThe area (Note that this doesn’t say anything about the type of work at the moment. For example, I probably should never do MechInterp myself because of personal fit. But I could still think it’s good to do something that overall supports MechInterp.)Biggest uncertaintyWho’s working on this
Hu- mans in con- trol

ASI governance | human-control

  • Who is in control of AI, what’s the governance structure etc.
  • Digital sentience
  • [...]
Is this tractable and is success path-dependent?Will MacAskill, [redacted]?, indirectly: cybersec. folk?, some AI governance work?

Acausal interactions | human-control

  • Metacognition
  • Decision theory
  • Values of future civilisation
  • SPIs
[redacted]
SPIs for causal interactions | human-controlCLR
Mis- align- mentPrevent sign flip and other near missesIs this a real concern?Nobody?

Acausal interactions | misalignment

  • Decision theory
  • Value porosity
Is this tractable?[redacted]? [redacted]?
Reducing conflict-conducive preferences for causal interactions & SPIs | misalignmentCLR

 

Main- stream AI safety best thing to work on

Reduction of malevolence in positions of influence through improving awareness (also goes into the “Humans in control” category)[redacted]? Nobody?
Differentially support responsible AI labs

For some of these: Would success be net good or net bad?

If good: How good?

How high is the penalty for being less neglected?

 
Influence AI timelines[redacted], [redacted], [redacted]?, maybe misc. policy people?
AI control (and ideas like paying AIs)Redwood Research
Model capabilities evaluationsMETR, Apollo?, maybe AI labs policy teams, maybe misc. Other policy people?

Alignment (more comprehensive overview):

  • MechInterp
  • ELK
  • (L)AT
  • Debate
  • COT oversight
  • Infrabayesianism
  • Natural abstractions
  • Understanding intelligence
  • [...]
Overview post on LessWrong
Human epistemics during early AI~Forecasting crowd, nobody?
Growing the AI safety and EA community or improving its branding or upskilling people in the community (e.g. fellowships)Constellation, Local groups, CEA, OpenPhilanthropy, …
Improving the AI safety and EA community and culture sociallyCEA
Threat modelling, scenario forecasting etc.[redacted], …
Make it harder to steal modelsCybersecurity folk
Regulate Open Source capabilitiesPolicy folk? Nobody?

What types of work are there?

Which worldType of workBroad category of work
Can be in any of the three areas aboveOffering 1-1 support (mental, operational, and debugging) 
Project management, events, and programsOrganising
Short, blogpost-style research, for example summaries, overviews, conversation notes, other distillations; potentially writing for others

Research or otherwise being a thinker,

Varying in my position in the research pipeline from foundational to strategizing about how to get things done

Long report-style conceptual research: Foundational (E.g. understanding an aspect of decision theory or cognition better)
Long report-style conceptual research: “Applied” (closer to what I’ve been trying to do. Trying to understand the implications. Could also be alignment thinking, e.g. [redacted].)
Pitching high-level empirical project ideas and grantmaking
Working with language models: Empirical ML
Public polling, qualitative opinion research
Humans in controlASI governance thinking
Synergizes most with “Mainstream AI safety” areas aboveEU AI office and AISI style policy work

Setting policy

“Normal”, outside of EA world

RAND and GovAI style policy research
Policy work at or for an AI lab
Grassroots advocacy

Opinion making, lobbying and advocacy

Leveraging social skills outside of EA world

Lobbying in DC, Berlin, London, or Brussels
Targeted individual outreach
Podcasting, youtubing

 

Appendix: Other considerations that go into thinking about my career

Here are other things that I’m thinking about for my career deliberations. I’m also still in the middle of figuring stuff out, so this is “The first part of my career deliberation seems maybe useful to others. I’ll also share the second half just in case” and not “Here is my complete career deliberation template that I found to work.” Note that I’m basically just listing considerations and possible approaches to take into account. The actual thinking about which ones are most important to you likely will need additional free-form space. I’d encourage you to share your approaches if you think it might be useful to others!

How do I want to approach choosing my (next) work?

OptionsWhich broad category of work does this fit?
Follow my curiosity or excitement. Follow the path of least emotional resistance. Don’t hesitate spending large amounts of time (months) just to understand something better even if it is not entirely clear whether it is necessary or useful.Research or otherwise being a thinker
Work on what others find useful.Research or otherwise being a thinker, organising
Check and apply to open positions.Research or otherwise being a thinker, organising, setting policy
Follow a systematic agenda. Ensure your work always has some path to impact.Could be any type of work

On the meta level, what is my priority for my next work?

OptionsPriorityExample activitiesSynergies with types of work
Direct impact[redacted] Anti-synergy with empirical ML
Skill-building and learning[redacted]MLABSetting policy, opinion making, some research
Exploration and fit testing[redacted]Try lobbying, talk to policy folk, learn about EU AI office, part-time podcastingSetting policy, opinion making, some research
Credibility and networking[redacted]Publish work, do a graduate degreeSetting policy, opinion making, being at a lab

How important are different properties of work to me?

PropertyIf applicable: Preferred directionPriority
Autonomy [redacted]
Guidance [redacted]
Feedback [redacted]
Free time [redacted]
Flexible work hours [redacted]
Stable income [redacted]
Time pressure[redacted][redacted]
Sign certainty [redacted]
Impact magnitude certainty [redacted]
Focus on one project vs. many balls[redacted][redacted]
Social interaction, peers [redacted]
Being relaxed and myself [redacted]

My personal career doc ends with a “Next steps” section that I’m not including. It’s a mix of talking to specific people and thinking for myself to resolve object-level uncertainties, uncertainties about what different kinds of work are like, and learning which heuristics for choosing work (steps) people I admire use.

Comments1


Sorted by Click to highlight new comments since:

Executive summary: This post provides an overview of different areas one could work on to positively influence the trajectory of artificial intelligence, along with key considerations and uncertainties for choosing between them.

Key points:

  1. The main areas of work are: ensuring human control of advanced AI systems, addressing AI misalignment risks, and supporting mainstream AI safety efforts.
  2. Key uncertainties include the tractability and neglectedness of different areas, and whether success in some areas would be net positive or negative.
  3. Types of AI safety related work include research, organizing, policy, and advocacy. The author is uncertain which type fits them best.
  4. Other career considerations include skill-building, exploration, credibility, and various properties of the work itself like autonomy and certainty of impact.
  5. Next steps are to resolve object-level uncertainties through discussions and introspection, and learn from the heuristics and approaches others use to choose their work.

 

 

This comment was auto-generated by the EA Forum Team. Feel free to point out issues with this summary by replying to the comment, and contact us if you have feedback.

Curated and popular this week
 ·  · 1m read
 · 
(Audio version here, or search for "Joe Carlsmith Audio" on your podcast app.) > “There comes a moment when the children who have been playing at burglars hush suddenly: was that a real footstep in the hall?”  > > - C.S. Lewis “The Human Condition,” by René Magritte (Image source here) 1. Introduction Sometimes, my thinking feels more “real” to me; and sometimes, it feels more “fake.” I want to do the real version, so I want to understand this spectrum better. This essay offers some reflections.  I give a bunch of examples of this “fake vs. real” spectrum below -- in AI, philosophy, competitive debate, everyday life, and religion. My current sense is that it brings together a cluster of related dimensions, namely: * Map vs. world: Is my mind directed at an abstraction, or it is trying to see past its model to the world beyond? * Hollow vs. solid: Am I using concepts/premises/frames that I secretly suspect are bullshit, or do I expect them to point at basically real stuff, even if imperfectly? * Rote vs. new: Is the thinking pre-computed, or is new processing occurring? * Soldier vs. scout: Is the thinking trying to defend a pre-chosen position, or is it just trying to get to the truth? * Dry vs. visceral: Does the content feel abstract and heady, or does it grip me at some more gut level? These dimensions aren’t the same. But I think they’re correlated – and I offer some speculations about why. In particular, I speculate about their relationship to the “telos” of thinking – that is, to the thing that thinking is “supposed to” do.  I also describe some tags I’m currently using when I remind myself to “really think.” In particular:  * Going slow * Following curiosity/aliveness * Staying in touch with why I’m thinking about something * Tethering my concepts to referents that feel “real” to me * Reminding myself that “arguments are lenses on the world” * Tuning into a relaxing sense of “helplessness” about the truth * Just actually imagining differ
Garrison
 ·  · 7m read
 · 
This is the full text of a post from "The Obsolete Newsletter," a Substack that I write about the intersection of capitalism, geopolitics, and artificial intelligence. I’m a freelance journalist and the author of a forthcoming book called Obsolete: Power, Profit, and the Race to build Machine Superintelligence. Consider subscribing to stay up to date with my work. Wow. The Wall Street Journal just reported that, "a consortium of investors led by Elon Musk is offering $97.4 billion to buy the nonprofit that controls OpenAI." Technically, they can't actually do that, so I'm going to assume that Musk is trying to buy all of the nonprofit's assets, which include governing control over OpenAI's for-profit, as well as all the profits above the company's profit caps. OpenAI CEO Sam Altman already tweeted, "no thank you but we will buy twitter for $9.74 billion if you want." (Musk, for his part, replied with just the word: "Swindler.") Even if Altman were willing, it's not clear if this bid could even go through. It can probably best be understood as an attempt to throw a wrench in OpenAI's ongoing plan to restructure fully into a for-profit company. To complete the transition, OpenAI needs to compensate its nonprofit for the fair market value of what it is giving up. In October, The Information reported that OpenAI was planning to give the nonprofit at least 25 percent of the new company, at the time, worth $37.5 billion. But in late January, the Financial Times reported that the nonprofit might only receive around $30 billion, "but a final price is yet to be determined." That's still a lot of money, but many experts I've spoken with think it drastically undervalues what the nonprofit is giving up. Musk has sued to block OpenAI's conversion, arguing that he would be irreparably harmed if it went through. But while Musk's suit seems unlikely to succeed, his latest gambit might significantly drive up the price OpenAI has to pay. (My guess is that Altman will still ma
 ·  · 5m read
 · 
When we built a calculator to help meat-eaters offset the animal welfare impact of their diet through donations (like carbon offsets), we didn't expect it to become one of our most effective tools for engaging new donors. In this post we explain how it works, why it seems particularly promising for increasing support for farmed animal charities, and what you can do to support this work if you think it’s worthwhile. In the comments I’ll also share our answers to some frequently asked questions and concerns some people have when thinking about the idea of an ‘animal welfare offset’. Background FarmKind is a donation platform whose mission is to support the animal movement by raising funds from the general public for some of the most effective charities working to fix factory farming. When we built our platform, we directionally estimated how much a donation to each of our recommended charities helps animals, to show users.  This also made it possible for us to calculate how much someone would need to donate to do as much good for farmed animals as their diet harms them – like carbon offsetting, but for animal welfare. So we built it. What we didn’t expect was how much something we built as a side project would capture peoples’ imaginations!  What it is and what it isn’t What it is:  * An engaging tool for bringing to life the idea that there are still ways to help farmed animals even if you’re unable/unwilling to go vegetarian/vegan. * A way to help people get a rough sense of how much they might want to give to do an amount of good that’s commensurate with the harm to farmed animals caused by their diet What it isn’t:  * A perfectly accurate crystal ball to determine how much a given individual would need to donate to exactly offset their diet. See the caveats here to understand why you shouldn’t take this (or any other charity impact estimate) literally. All models are wrong but some are useful. * A flashy piece of software (yet!). It was built as