Hide table of contents

Quick update from AE Studio: last week, Judd (AE’s CEO) hosted a panel at SXSW with Anil Seth, Allison Duettmann, and Michael Graziano, entitled “The Path to Conscious AI” (discussion summary here[1]). 

We’re also making available an unedited Otter transcript/recording for those who might want to read along or increase the speed of the playback. 

Why AI consciousness research seems critical to us

With the release of each new frontier model seems to follow a cascade of questions probing whether or not the model is conscious in training and/or deployment. We suspect that these questions will only grow in number and volume as these models exhibit increasingly sophisticated cognition. 

If consciousness is indeed sufficient for moral patienthood, then the stakes seem remarkably high from a utilitarian perspective that we do not commit the Type II error of behaving as if these and future systems are not conscious in a world where they are in fact conscious. 

Our current understanding of the possible states we may be in with respect to conscious AI, along with the general value associated with being in that state. Somewhat akin to Pascal’s wager, this framing would suggest that the expected value of acting as if AI is not conscious may be significantly lower than acting as if AI is conscious in light of current uncertainty about how consciousness actually works.

Because the ground truth here (i.e., how consciousness works mechanistically) is still poorly understood, it is extremely challenging to reliably estimate the probability that we are in any of the four quadrants above—which seems to us like a very alarming status quo. Different people have different default intuitions about this question, but the stakes here seem too high for default intuitions to be governing our collective behavior. 

In an ideal world, we'd have understood far more about consciousness and human cognition before getting near AGI. For this reason, we suspect that there is likely substantial work that ought to be done at a smaller scale first to better understand consciousness and its implications for alignment. Doing this work now seems far preferable to a counterfactual world where we build frontier models that end up being conscious while we still lack a reasonable model for the correlates or implications of building sentient AI systems.

Accordingly, we are genuinely excited about rollouts of consciousness evals at large labs, though the earlier caveat still applies: our currently-limited understanding of how consciousness actually works may engender a (potentially dangerous) false sense of confidence in these metrics.

Additionally, we believe testing and developing an empirical model of consciousness will enable us to better understand humans, our values, and any future conscious models. We also suspect that consciousness may be an essential cognitive component of human prosociality and may have additional broader implications for solutions to alignment. To this end, we are currently collaborating with panelist Michael Graziano in pursuing a more mechanistic model of consciousness by operationalizing attention schema theory

Ultimately, we believe that immediately devoting time, resources, and attention towards better understanding the computational underpinnings of consciousness may be one of the most important neglected approaches that can be pursued in the short term. Better models of consciousness could likely (1) cause us to dramatically reconsider how we interact with and deploy our current AI systems, and (2) yield insights related to prosociality/human values that lead to promising novel alignment directions.  

Of course, this is but a small part of a larger, accelerating conversation that has been ongoing on LW and the EAF for some time. We thought it might be useful to aggregate some of the articles we’ve been reading here, including panelists Michael Graziano’s book, “Rethinking Consciousness” (and article, Without Consciousness, AIs Will Be Sociopaths) as well as Anil Seth’s book, “Being You”. 

There’s also Propositions Concerning Digital Minds and SocietyConsciousness in Artificial Intelligence: Insights from the Science of Consciousness, Consciousness as Intrinsically Valued Internal Experience, and Improving the Welfare of AIs: A Nearcasted Proposal.

Further articles/papers we’ve been reading: 

Some relevant tweets:

…along with plenty of other resources we are probably not aware of. If we are missing anything important, please do share in the comments below!

  1. ^

     GPT-generated summary from the raw transcript: the discussion, titled "The Path to Conscious AI," explores whether AI can be considered conscious and the impact on AI alignment, starting with a playful discussion around the new AI model Claude Opus. 

    Experts in neuroscience, AI, and philosophy debate the nature of consciousness, distinguishing it from intelligence and discussing its implications for AI development. They consider various theories of consciousness, including the attention schema theory, and the importance of understanding consciousness in AI for ethical and safety reasons. 

    The conversation delves into whether AI could or should be designed to be conscious and the potential existential risks AI poses to humanity. The panel emphasizes the need for humility and scientific rigor in approaching these questions due to the complexity and uncertainty surrounding consciousness.

Comments


No comments on this post yet.
Be the first to respond.
Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f