As GiveWell has stopped sharing estimates on the future impact of donations to individual charities, I propose to use forecasting as a replacement. However, the resolutions will not apply to individual donations, so that I would be interested in ideas for alternative estimations.

Last fall, GiveWell discontinued its impact calculator. On their website, they write:

We’ve decided to use impact estimates based on grants that GiveWell has made from our Maximum Impact Fund or has recommended to Open Philanthropy. By using only past grants, we can share more concrete estimates of impact than if we’re trying to guess what the future impact of a donation will be.

Backward-looking estimates don’t fit well into our impact calculator design, which offered donors an estimate of what their donation will accomplish in the future.

They still report backwards-looking estimates, although only for grants made from the Maximum Impact Fund and recommendations to the Open Philanthropy Project.

Different EA organisations use impact calculations to communicate individuals' impact through their donations. The GWWC calculator "How Rich Am I" gives an estimate on bednets distributed, schistosomiasis treatments, and lives saved per dollar amount. EA Australia has an impact calculator (disclaimer: I was involved in writing the underlying software), Ayuda Efectiva uses the GiveWell numbers for their impact calculations, and One For The World communicates them. These are only a few examples.

In most cases, they can seem like forward-looking projections for the money donated now. At the same time, they seemingly rely on GiveWell estimates that are backwards-looking and do not include individual donations. This could lead to donors finding out in the future that their donations' impact is different than expected and losing trust in recommendations from EA recommender websites. 

An easy solution is to change the website's wording to reflect the changed approach of GiveWell or to discontinue the use of impact calculators or the communication of impact for individual donations altogether.

However, there might be cases where new donors can be motivated more easily with impact estimates than without. I propose not using backwards-facing impact numbers but estimates of current ones. As GiveWell is increasing the funding opportunities for the Maximum Impact Fund, they are lowering their funding bar. This will also affect individual donors' impact.

Given the knowledge about forecasting in the EA community, I would be interested to see ideas on how the impact of current donations for GiveWell's top charities could be projected. I assume the most straightforward questions would be around numbers that GiveWell will retroactively publish concerning the impact of the Maximum Impact Fund: There will be a clear resolution if GiveWell continues its publications.

For donations on the individual level, GiveWell does not calculate backwards-looking estimates. They are stating:

We exclude the funding [for donations that donors make to an organization we recommend, but that aren’t directed to a specific funding opportunity] because we don’t have estimates of the cost-effectiveness of those donations. We only calculate the cost-effectiveness for specific funding opportunities. Funding directed to our top charities could be either more or less cost-effective than the funding directed to specific funding gaps. Rather than guessing at a number and using it for our calculations, we’ve excluded this funding.

So making forecasts for these numbers won't lead to a resolution by GiveWell. 

I'm hoping for suggestions in the comments on how to get to forward-looking estimates on the individual level. If there are ideas worth setting up discussions for, I'm glad to facilitate them.

Comments


No comments on this post yet.
Be the first to respond.
Curated and popular this week
 ·  · 38m read
 · 
In recent months, the CEOs of leading AI companies have grown increasingly confident about rapid progress: * OpenAI's Sam Altman: Shifted from saying in November "the rate of progress continues" to declaring in January "we are now confident we know how to build AGI" * Anthropic's Dario Amodei: Stated in January "I'm more confident than I've ever been that we're close to powerful capabilities... in the next 2-3 years" * Google DeepMind's Demis Hassabis: Changed from "as soon as 10 years" in autumn to "probably three to five years away" by January. What explains the shift? Is it just hype? Or could we really have Artificial General Intelligence (AGI)[1] by 2028? In this article, I look at what's driven recent progress, estimate how far those drivers can continue, and explain why they're likely to continue for at least four more years. In particular, while in 2024 progress in LLM chatbots seemed to slow, a new approach started to work: teaching the models to reason using reinforcement learning. In just a year, this let them surpass human PhDs at answering difficult scientific reasoning questions, and achieve expert-level performance on one-hour coding tasks. We don't know how capable AGI will become, but extrapolating the recent rate of progress suggests that, by 2028, we could reach AI models with beyond-human reasoning abilities, expert-level knowledge in every domain, and that can autonomously complete multi-week projects, and progress would likely continue from there.  On this set of software engineering & computer use tasks, in 2020 AI was only able to do tasks that would typically take a human expert a couple of seconds. By 2024, that had risen to almost an hour. If the trend continues, by 2028 it'll reach several weeks.  No longer mere chatbots, these 'agent' models might soon satisfy many people's definitions of AGI — roughly, AI systems that match human performance at most knowledge work (see definition in footnote). This means that, while the compa
 ·  · 4m read
 · 
SUMMARY:  ALLFED is launching an emergency appeal on the EA Forum due to a serious funding shortfall. Without new support, ALLFED will be forced to cut half our budget in the coming months, drastically reducing our capacity to help build global food system resilience for catastrophic scenarios like nuclear winter, a severe pandemic, or infrastructure breakdown. ALLFED is seeking $800,000 over the course of 2025 to sustain its team, continue policy-relevant research, and move forward with pilot projects that could save lives in a catastrophe. As funding priorities shift toward AI safety, we believe resilient food solutions remain a highly cost-effective way to protect the future. If you’re able to support or share this appeal, please visit allfed.info/donate. Donate to ALLFED FULL ARTICLE: I (David Denkenberger) am writing alongside two of my team-mates, as ALLFED’s co-founder, to ask for your support. This is the first time in Alliance to Feed the Earth in Disaster’s (ALLFED’s) 8 year existence that we have reached out on the EA Forum with a direct funding appeal outside of Marginal Funding Week/our annual updates. I am doing so because ALLFED’s funding situation is serious, and because so much of ALLFED’s progress to date has been made possible through the support, feedback, and collaboration of the EA community.  Read our funding appeal At ALLFED, we are deeply grateful to all our supporters, including the Survival and Flourishing Fund, which has provided the majority of our funding for years. At the end of 2024, we learned we would be receiving far less support than expected due to a shift in SFF’s strategic priorities toward AI safety. Without additional funding, ALLFED will need to shrink. I believe the marginal cost effectiveness for improving the future and saving lives of resilience is competitive with AI Safety, even if timelines are short, because of potential AI-induced catastrophes. That is why we are asking people to donate to this emergency appeal
 ·  · 1m read
 · 
We’ve written a new report on the threat of AI-enabled coups.  I think this is a very serious risk – comparable in importance to AI takeover but much more neglected.  In fact, AI-enabled coups and AI takeover have pretty similar threat models. To see this, here’s a very basic threat model for AI takeover: 1. Humanity develops superhuman AI 2. Superhuman AI is misaligned and power-seeking 3. Superhuman AI seizes power for itself And now here’s a closely analogous threat model for AI-enabled coups: 1. Humanity develops superhuman AI 2. Superhuman AI is controlled by a small group 3. Superhuman AI seizes power for the small group While the report focuses on the risk that someone seizes power over a country, I think that similar dynamics could allow someone to take over the world. In fact, if someone wanted to take over the world, their best strategy might well be to first stage an AI-enabled coup in the United States (or whichever country leads on superhuman AI), and then go from there to world domination. A single person taking over the world would be really bad. I’ve previously argued that it might even be worse than AI takeover. [1] The concrete threat models for AI-enabled coups that we discuss largely translate like-for-like over to the risk of AI takeover.[2] Similarly, there’s a lot of overlap in the mitigations that help with AI-enabled coups and AI takeover risk — e.g. alignment audits to ensure no human has made AI secretly loyal to them, transparency about AI capabilities, monitoring AI activities for suspicious behaviour, and infosecurity to prevent insiders from tampering with training.  If the world won't slow down AI development based on AI takeover risk (e.g. because there’s isn’t strong evidence for misalignment), then advocating for a slow down based on the risk of AI-enabled coups might be more convincing and achieve many of the same goals.  I really want to encourage readers — especially those at labs or governments — to do something
Recent opportunities in Effective giving
47
· · 3m read