5 min read 7

84

Note: This post was crossposted from Planned Obsolescence by the Forum team, with the author's permission. The author may not see or respond to comments on this post.

Researchers could potentially design the next generation of ML models more quickly by delegating some work to existing models, creating a feedback loop of ever-accelerating progress.

The concept of an “intelligence explosion” has played an important role in discourse about advanced AI for decades. Early computer scientist I.J. Good described it like this in 1965:

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control.

This presentation, like most other popular presentations of the intelligence explosion concept, focuses on what happens after we have a single AI system that can already do better at every task than any human (which Good calls an “ultraintelligent machine” above, and others have called “an artificial superintelligence”). It calls to mind an image of AI progress with two phases:

  • In Phase 1, humans are doing all the AI research, and progress ramps up steadily. We can more or less predict the rate of future progress (i.e. how quickly AI systems will improve their capabilities) by extrapolating from past rates of progress.[1]
  • Eventually humans succeed at building an artificial superintelligence (or ASI), leading to Phase 2. In Phase 2, this ASI is doing all of the AI research by itself. All of a sudden, progress in AI capabilities is no longer bottlenecked by slow human researchers, and an intelligence explosion is kicked off. The rate of progress in AI research goes up sharply — perhaps years of progress is compressed into days or weeks.

But I think this picture is probably too all-or-nothing. Today’s large language models (LLMs) like GPT-4 are not (yet) capable of completely taking over AI research by themselves — but they are able to write code, come up with ideas for ML experiments, and help troubleshoot bugs and other issues. Anecdotally, several ML researchers I know are starting to delegate simple tasks that come up in their research to these LLMs, and they say that makes them meaningfully more productive. (When chatGPT went down for 6 hours, I know of one ML researcher who postponed their coding tasks for 6 hours and worked on other things in the meantime.[2])

If this holds true more broadly, researchers could potentially design and train the next generation of ML models more quickly and easily by delegating to existing LLMs.[3] This calls to mind a more continuous “intelligence explosion” that begins before we have any single artificial superintelligence:

  • Currently, human researchers collectively are responsible for almost all of the progress in AI research, but are starting to delegate a small fraction of the work to large language models. This makes it somewhat easier to design and train the next generation of models.
  • The next generation is able to handle harder tasks and more different types of tasks, so human researchers delegate more of their work to them. This makes it significantly easier to train the generation after that. Using models gives a much bigger boost than it did the last time around.
  • Each round of this process makes the whole field move faster and faster. In each round, human researchers delegate everything they can productively delegate to the current generation of models — and the more powerful those models are, the more they contribute to research and thus the faster AI capabilities can improve.

This feedback loop could be getting started now. If it goes on for enough cycles without hitting any fundamental blockers, at some point our AI systems will have taken over all the work involved in designing more powerful AI systems. And it could keep going beyond that, with a research community consisting entirely of AIs working at an inhuman pace to make yet-more-sophisticated AIs. Once AI systems have automated AI research entirely, I think it’s likely that the full obsolescence regime that we discussed in our first post will come soon after.[4]

If so, the end state would be similar to what IJ Good envisioned — we could have “artificial superintelligence”[5] that improves AI capabilities further and quickly leaves human capabilities far behind. But before we have artificial superintelligence, we might have already vastly accelerated the pace of progress in AI research[6] with the help of lesser models.

Exactly how much acceleration might happen before we have AI systems that can handle all the AI research by themselves, and how much might happen after? Will it feel like a pretty sudden jump — we spend a while with some neat, mildly useful AI assistants and then all of a sudden we develop AI that obsoletes humanity? Or will we have many years in which AI systems get increasingly impressive and perceptibly accelerate the pace of progress before humans are fully obsolete?

This is a very complicated question that I’m not going to get into in this post, but my colleague Tom Davidson put out a thorough research report exploring takeoff speeds — essentially, how quickly and suddenly we move from the world of today to the obsolescence regime. If you’re interested in this topic, I’d encourage you to check it out.

One important implication of Tom’s analysis: we may hit major milestones of AI progress sooner than you’d guess, and blow past them faster than you’d guess. Suppose you have some intuitions about, say, when an AI system might be able to win a gold medal in the International Math Olympiad. If you were previously picturing human researchers doing all the work of AI research, your guess should move toward “sooner” when you factor in the possibility that AI systems themselves could start helping a lot soon. Similarly, factoring in the possibility of this feedback loop should move your guess for when we might enter the obsolescence regime toward “sooner” as well.


  1. In reality, even if humans are the only ones doing AI research, we can’t always predict future progress by simply extrapolating from past progress. For example, if AI starts to get much more attention from investors and more money floods in, it’s likely that more people will switch into AI research, meaning that future research progress might go a lot faster than recent past progress. ↩︎

  2. I’d love to see more systematic data collection about this! ↩︎

  3. Is this actually an interesting or significant observation? After all, lots of tools (from calculators to better programming languages to search engines) have made programmers and researchers more productive historically. What would it matter if we could add LLMs to this list? In my mind, the key difference is that ML models could provide bigger, broader productivity gains than other tools, and these gains could keep increasing massively with each jump in scale. ↩︎

  1. Specifically, I’d guess this happens in less than a year. ↩︎

  2. Albeit potentially distributed across multiple systems, rather than housed in one machine. ↩︎

  3. And potentially in other areas of scientific R&D. ↩︎

Show all footnotes
Comments7


Sorted by Click to highlight new comments since:
TW123
25
3
0
1

I have collected existing examples of this broad class of things on ai-improving-ai.safe.ai.

https://arxiv.org/pdf/2303.08774v3.pdf#page=64 
This is a technical report about GPT-4, on page 64 it details a process they use for self improvement in training. It generates training data by itself super cool. 
Credit to Vladimir_Nesov from LessWrong who linked and mentioned this in a discussion, interesting stuff. 

I recently surveyed c.100 people working in IT to ask them about the extent to which they thought that AI would speed up coding. (Presumably if coding can be done faster, AI can be created more quickly too)

They estimated that coding can be done twice as fast thanks to AI tools, and that's before giving any credit to AI getting better in the future.

There are several reasons not to trust the survey too blindly, which I outline in my post on the topic.

(Presumably if coding can be done faster, AI can be created more quickly too)

Wait, which mechanisms did you have in mind? 

AI -> software coded up faster -> more software people go into AI -> AI becomes more popular?

AI -> coding for AI research is easier -> more AI research

AI -> code to implement neural networks written faster -> AI implemented more quickly (afaik not too big a factor? I might be wrong though)

AI -> code that writes e.g. symbolic AI from scratch -> AI?

I don't recommend that you update much on what I had in mind, since I wasn't thinking very hard about this point. What I had in mind was:

AI -> coding for AI research is easier -> more AI research

If someone discussed it with me, I might have also mentioned

AI -> code to implement neural networks written faster -> AI implemented more quickly 

AI -> code that writes e.g. symbolic AI from scratch -> AI?

(I wasn't particularly thinking of that though)

I guess the labour market effects (i.e. the below) might also apply, but I wasn't thinking of that

AI -> software coded up faster -> more software people go into AI -> AI becomes more popular?


You're absolutely right about the "black box" issue in current ML paradigms. It's like we're in a loop where we use mysterious models to enhance even more enigmatic models. While these AI systems, especially the advanced LLMs, are pushing the boundaries of what's possible in research, there's a growing concern about our understanding (or lack thereof) of how exactly they arrive at certain conclusions or solutions.

The dilemma here is two-fold. On one hand, AI's capability to expedite research and development is undeniable and immensely valuable. On the other, the increasing complexity and opacity of these models pose significant challenges, not just technically but ethically as well. If we continue down this path, we might reach a point where AI's decisions and methods are beyond our comprehension, raising questions about control and responsibility.

So, while the acceleration of AI research by AI itself is an exciting prospect, tools like Mistral AI( https://mistral.ai/ ), Perplexity AI( https://perplexity.ai/ ), and Anakin AI( https://anakin.ai/ ) are getting into regular people's views, it's crucial that we develop a parallel focus on making these systems more transparent and understandable. It's not just about making faster progress, but ensuring that this progress is aligned with our values and is under our control.

Curated and popular this week
 ·  · 5m read
 · 
This work has come out of my Undergraduate dissertation. I haven't shared or discussed these results much before putting this up.  Message me if you'd like the code :) Edit: 16th April. After helpful comments, especially from Geoffrey, I now believe this method only identifies shifts in the happiness scale (not stretches). Have edited to make this clearer. TLDR * Life satisfaction (LS) appears flat over time, despite massive economic growth — the “Easterlin Paradox.” * Some argue that happiness is rising, but we’re reporting it more conservatively — a phenomenon called rescaling. * I test rescaling using long-run German panel data, looking at whether the association between reported happiness and three “get-me-out-of-here” actions (divorce, job resignation, and hospitalisation) changes over time. * If people are getting happier (and rescaling is occuring) the probability of these actions should become less linked to reported LS — but they don’t. * I find little evidence of rescaling. We should probably take self-reported happiness scores at face value. 1. Background: The Happiness Paradox Humans today live longer, richer, and healthier lives in history — yet we seem no seem for it. Self-reported life satisfaction (LS), usually measured on a 0–10 scale, has remained remarkably flatover the last few decades, even in countries like Germany, the UK, China, and India that have experienced huge GDP growth. As Michael Plant has written, the empirical evidence for this is fairly strong. This is the Easterlin Paradox. It is a paradox, because at a point in time, income is strongly linked to happiness, as I've written on the forum before. This should feel uncomfortable for anyone who believes that economic progress should make lives better — including (me) and others in the EA/Progress Studies worlds. Assuming agree on the empirical facts (i.e., self-reported happiness isn't increasing), there are a few potential explanations: * Hedonic adaptation: as life gets
 ·  · 38m read
 · 
In recent months, the CEOs of leading AI companies have grown increasingly confident about rapid progress: * OpenAI's Sam Altman: Shifted from saying in November "the rate of progress continues" to declaring in January "we are now confident we know how to build AGI" * Anthropic's Dario Amodei: Stated in January "I'm more confident than I've ever been that we're close to powerful capabilities... in the next 2-3 years" * Google DeepMind's Demis Hassabis: Changed from "as soon as 10 years" in autumn to "probably three to five years away" by January. What explains the shift? Is it just hype? Or could we really have Artificial General Intelligence (AGI)[1] by 2028? In this article, I look at what's driven recent progress, estimate how far those drivers can continue, and explain why they're likely to continue for at least four more years. In particular, while in 2024 progress in LLM chatbots seemed to slow, a new approach started to work: teaching the models to reason using reinforcement learning. In just a year, this let them surpass human PhDs at answering difficult scientific reasoning questions, and achieve expert-level performance on one-hour coding tasks. We don't know how capable AGI will become, but extrapolating the recent rate of progress suggests that, by 2028, we could reach AI models with beyond-human reasoning abilities, expert-level knowledge in every domain, and that can autonomously complete multi-week projects, and progress would likely continue from there.  On this set of software engineering & computer use tasks, in 2020 AI was only able to do tasks that would typically take a human expert a couple of seconds. By 2024, that had risen to almost an hour. If the trend continues, by 2028 it'll reach several weeks.  No longer mere chatbots, these 'agent' models might soon satisfy many people's definitions of AGI — roughly, AI systems that match human performance at most knowledge work (see definition in footnote). This means that, while the compa
 ·  · 4m read
 · 
SUMMARY:  ALLFED is launching an emergency appeal on the EA Forum due to a serious funding shortfall. Without new support, ALLFED will be forced to cut half our budget in the coming months, drastically reducing our capacity to help build global food system resilience for catastrophic scenarios like nuclear winter, a severe pandemic, or infrastructure breakdown. ALLFED is seeking $800,000 over the course of 2025 to sustain its team, continue policy-relevant research, and move forward with pilot projects that could save lives in a catastrophe. As funding priorities shift toward AI safety, we believe resilient food solutions remain a highly cost-effective way to protect the future. If you’re able to support or share this appeal, please visit allfed.info/donate. Donate to ALLFED FULL ARTICLE: I (David Denkenberger) am writing alongside two of my team-mates, as ALLFED’s co-founder, to ask for your support. This is the first time in Alliance to Feed the Earth in Disaster’s (ALLFED’s) 8 year existence that we have reached out on the EA Forum with a direct funding appeal outside of Marginal Funding Week/our annual updates. I am doing so because ALLFED’s funding situation is serious, and because so much of ALLFED’s progress to date has been made possible through the support, feedback, and collaboration of the EA community.  Read our funding appeal At ALLFED, we are deeply grateful to all our supporters, including the Survival and Flourishing Fund, which has provided the majority of our funding for years. At the end of 2024, we learned we would be receiving far less support than expected due to a shift in SFF’s strategic priorities toward AI safety. Without additional funding, ALLFED will need to shrink. I believe the marginal cost effectiveness for improving the future and saving lives of resilience is competitive with AI Safety, even if timelines are short, because of potential AI-induced catastrophes. That is why we are asking people to donate to this emergency appeal