In this article, Bloomberg claims that undisclosed manufacturing changes at one of the largest producers of anti-malaria bednets have led to distribution of hundreds of millions of ineffective (or less-effective) bednets, and that this problem is linked to an increase in malaria incidence in the places where these nets were distributed.

The manufacturer is Vestergaard and the Against Malaria Foundation is among their clients.

Bloomberg has a steep paywall but the link here gives free access until March 2.

Comments6


Sorted by Click to highlight new comments since:

Hi Ian, thanks for sharing this article – our team wrote up some notes on how this topic intersects with our work, and I (Isabel Arjmand writing on behalf of GiveWell) thought it might be useful to share here.

Like the Bloomberg editorial board, we're concerned about stalling progress in the fight against malaria, but we're skeptical that quality issues with PermaNet 2.0s have influenced this progress as much as the article suggests.

All things considered, we believe that malaria nets are, and have been, highly effective in reducing malaria burden. The Against Malaria Foundation had first shared the studies highlighted above with us in 2020, and the claims in the Bloomberg article have prompted us to do some additional research.

Based on the work we've done so far, we aren't convinced that decreased net quality is primarily responsible for malaria resurging in Papua New Guinea. So far, we see this as a milder negative update on nets than the article would indicate, in part because we think these tests of net quality may not be a perfect proxy for effectiveness in reducing cases and in part because we no longer fund PermaNet 2.0s (for unrelated reasons). At the same time, renewed interest in the evidence around PermaNet 2.0 quality is a nudge for us to prioritize further work to understand net quality control in general.

More detail on the implications of this research for GiveWell's work

While we no longer fund PermaNet 2.0s because we now fund newer types of nets instead, they make up roughly 20% of nets we've funded historically. The studies referenced in the Bloomberg article looked at nets distributed in Papua New Guinea and indicate that the post-2012 PermaNet 2.0s perform worse on certain efficacy tests. We aren't sure how well those efficacy tests serve as a proxy for malaria transmission (e.g. mosquitoes in these tests could be impaired from the exposure to insecticides even if it isn't sufficient to kill them). We're also skeptical that changes to the formulation of PermaNet 2.0s were the key driver of increased malaria cases in Papua New Guinea. During this time, we think other factors like insecticide resistance and shifts in biting patterns likely played a meaningful role (as highlighted in this paper). That said, we see these studies as a negative update on the effectiveness of those nets.

We did a quick back-of-the-envelope calculation (so this is more illustrative than fully baked, at this point):

  • Assuming the insecticide treatment on PermaNet 2.0s was 80% less effective after 2012 would make those nets look 30-50% less effective overall than we'd previously modeled. That's because we model roughly 30% of the benefit of nets as coming from the physical barrier in the absence of insecticide resistance, and we already discount the effectiveness of nets like PermaNet 2.0 because of insecticide resistance. We would guess that with further work, we'd estimate that 80% is on the pessimistic side of things (which would put the overall impact on net efficacy at the low end of our 30-50% range, or lower).
  • Then, assuming that similar issues don't apply to other nets (which could be wrong – we plan to look into this more), our overall nets grantmaking would look roughly 5-10% less cost-effective than we'd previously estimated, since PermaNet 2.0s are around 20% of our historical nets distributed. That proportion has varied over time. In 2018, all of the nets we funded were PermaNet 2.0s; now, we fund newer types of nets instead.

While concerns specific to PermaNet 2.0s don't directly affect our future allocation decisions, this issue does raise more general concerns about quality control for nets. Ideally, we would have prioritized more work in this area in the past. We're planning to learn more about quality control processes and we also want to better understand how others in the malaria field are thinking about this.

Verstergaard has a reply on their website FWIW, can't vouch for it/just passing along: https://vestergaard.com/blogs/vestergaard-position-bloomberg-article-malaria-bed-nets-papua-new-guinea/ 

Wow thanks for the fascinating article. I'm amazed these kinds of failures are tolerated without stronger action. The way the article paints it at least, companies might be getting away with cutting costs on net production and almost causing deaths through inadequate insecticide infusion. In this article the WHO "WHO sent a letter of concern to Germany-based Mainpol GmbH because some of its nets contained too much or too little insecticide." Is that really strong enough action? Surely you cut the supplier, investigate and maybe sue them if they haven't met a standard?

Tesla recalls tens of thousands of cars for a minor manufacturing defect that might cause a death or two, while the WHO just writes letters about defects that could be killing thousands?
 
Although it wasn't clear, there might also be a "DDT" effect here - where concern about the environmental effects of a chemical means they switch to an inferior one.

"The original coating contained PFAS, dubbed forever chemicals because they’re so slow to break down. While PFAS are still widely used to make shoes and backpacks water resistant and to produce firefighting foams, they’ve been linked to increased cancer risk, decreased fertility and developmental delays in children.Their use has been restricted in many countries and industries have been seeking alternatives."

 Are we willing to do some potential harm in order to do more good? Always a tricky question.

Thanks for extracting that quote about PFAS, this is really the main point for me.

In the contamination remediation industry (which I have some familiarity with via my partner), PFAS seems to be considered to be the boogey-man of contaminants (for enviro and health reasons).

I can imagine an alternative headline that highlights how AMF et al. have been handing out bednets containing PFAS. Doesn't seem like it would go down well either.

Perhaps we just need to accept that this is an R&D problem that needs to be solved ASAP, and respond accordingly.

According to the article, there are high-performing PFAS alternatives, but they are more expensive. So instead Verstergaard allegedly went with the cheaper, lower-performing option.

The link did not work for me, so here's one that did: https://archive.is/3f99r 

Curated and popular this week
LintzA
 ·  · 15m read
 · 
Cross-posted to Lesswrong Introduction Several developments over the past few months should cause you to re-evaluate what you are doing. These include: 1. Updates toward short timelines 2. The Trump presidency 3. The o1 (inference-time compute scaling) paradigm 4. Deepseek 5. Stargate/AI datacenter spending 6. Increased internal deployment 7. Absence of AI x-risk/safety considerations in mainstream AI discourse Taken together, these are enough to render many existing AI governance strategies obsolete (and probably some technical safety strategies too). There's a good chance we're entering crunch time and that should absolutely affect your theory of change and what you plan to work on. In this piece I try to give a quick summary of these developments and think through the broader implications these have for AI safety. At the end of the piece I give some quick initial thoughts on how these developments affect what safety-concerned folks should be prioritizing. These are early days and I expect many of my takes will shift, look forward to discussing in the comments!  Implications of recent developments Updates toward short timelines There’s general agreement that timelines are likely to be far shorter than most expected. Both Sam Altman and Dario Amodei have recently said they expect AGI within the next 3 years. Anecdotally, nearly everyone I know or have heard of who was expecting longer timelines has updated significantly toward short timelines (<5 years). E.g. Ajeya’s median estimate is that 99% of fully-remote jobs will be automatable in roughly 6-8 years, 5+ years earlier than her 2023 estimate. On a quick look, prediction markets seem to have shifted to short timelines (e.g. Metaculus[1] & Manifold appear to have roughly 2030 median timelines to AGI, though haven’t moved dramatically in recent months). We’ve consistently seen performance on benchmarks far exceed what most predicted. Most recently, Epoch was surprised to see OpenAI’s o3 model achi
Dr Kassim
 ·  · 4m read
 · 
Hey everyone, I’ve been going through the EA Introductory Program, and I have to admit some of these ideas make sense, but others leave me with more questions than answers. I’m trying to wrap my head around certain core EA principles, and the more I think about them, the more I wonder: Am I misunderstanding, or are there blind spots in EA’s approach? I’d really love to hear what others think. Maybe you can help me clarify some of my doubts. Or maybe you share the same reservations? Let’s talk. Cause Prioritization. Does It Ignore Political and Social Reality? EA focuses on doing the most good per dollar, which makes sense in theory. But does it hold up when you apply it to real world contexts especially in countries like Uganda? Take malaria prevention. It’s a top EA cause because it’s highly cost effective $5,000 can save a life through bed nets (GiveWell, 2023). But what happens when government corruption or instability disrupts these programs? The Global Fund scandal in Uganda saw $1.6 million in malaria aid mismanaged (Global Fund Audit Report, 2016). If money isn’t reaching the people it’s meant to help, is it really the best use of resources? And what about leadership changes? Policies shift unpredictably here. A national animal welfare initiative I supported lost momentum when political priorities changed. How does EA factor in these uncertainties when prioritizing causes? It feels like EA assumes a stable world where money always achieves the intended impact. But what if that’s not the world we live in? Long termism. A Luxury When the Present Is in Crisis? I get why long termists argue that future people matter. But should we really prioritize them over people suffering today? Long termism tells us that existential risks like AI could wipe out trillions of future lives. But in Uganda, we’re losing lives now—1,500+ die from rabies annually (WHO, 2021), and 41% of children suffer from stunting due to malnutrition (UNICEF, 2022). These are preventable d
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f
Recent opportunities in Global health & development