Supervolcanic eruptions are approximately 10 times as powerful as the eruption that caused the year without a summer in 1816. A supervolcanic eruption would cause local devastation, but the main problem is blocking the sun for years and starvation (with possible loss of civilization without recovery and other far future effects). Indeed, many people think that the genetic bottleneck of humans going to a population of only a few thousand was due to a super volcanic eruption 74,000 years ago. It is widely assumed that there is nothing we can do to prevent or mollify supervolcanic eruptions. However, I came up with over 50 possible interventions. In the paper, we could not get into economics. I have done some initial estimates that indicate that the most promising interventions of adding soil or water on top of the supervolcano to delay an eruption for 100 years would likely be cost-effective only considering the present generation. However, this is in isolation. In reality, the first thing we should do is get prepared with alternate foods that are not dependent on sunlight. This would protect against the majority of the damage associated with a supervolcanic eruption, making prevention of a supervolcanic eruption less cost-effective. Still, since people are already doing research on supervolcanic eruptions, it may make sense to nudge that research towards directions that would reduce global catastrophic/extistential risk.

Here is the full paper and below is the abstract:

A supervolcanic eruption of 10^15 kg could block the sun for years, causing mass starvation or even extinction of some species, including humans. Despite awareness of this problem for several decades, only five interventions have been proposed. In this paper, we increase the number of total possible interventions by more than an order of magnitude. The 64 total interventions involve changing magma characteristics, venting magma, strengthening the cap (rock above the magma), putting more pressure on the magma, stopping an eruption in progress, containing the erupted material, disrupting the plume, or provoking a less intense eruption. We  provide qualitative evaluations of the feasibility and risk of 38 of the more promising interventions. The two most promising interventions involve putting more pressure on the magma and delaying the eruption with water dams or soil over the magma chamber. We perform a technical analysis, accurate to within an order of magnitude, and find that water dams and soil and could statistically delay the eruption for a century with 1 and 15 years of effort, respectively. All actions require essentially untested geoengineering challenges along with economic, political and general public acceptance. Further work is required to refine the science, provide cost estimates, and compare cost effectiveness with interventions focusing on adapting to a supereruption.

23

0
0

Reactions

0
0
Comments8


Sorted by Click to highlight new comments since:
[anonymous]5
0
0

Thanks for this interesting paper. Having looked into this a bit, my impression is that some of the figures on the risk posed by supervolcanoes are too high.

Estimates of the frequency of VEI=8 eruptions vary from 30,000 years to around 130,000 years ( W. Aspinall et al., “Volcano Hazard and Exposure in GFDRR Priority Countries and Risk Mitigation Measures,” Volcano Risk Study 0100806- 00-1-R, 2011, 15; Susan Loughlin et al., Global Volcanic Hazards and Risk (Cambridge University Press, 2015), 97)

If VEI=8 events are as frequent as suggested in your paper (on the order of 10,000 years), it seems extremely unlikely that they would constitute an ex risk: the homo genus would have had to have gone through this 120 times and survived at much lower levels of technical sophistication than today.

Some of the literature estimates the frequency of VEI=9 events at one every 30 million years, with massive uncertainty. (Aspinall et al., “Volcano Hazard and Exposure in GFDRR Priority Countries and Risk Mitigation Measures,” 15.)

Thanks for the feedback. I cited the most recent study that claims to have identified more eruptions than previous studies: Rougier, J., Sparks, R. S. J., Cashman, K. V., & Brown, S. K. (2018). The global magnitude–frequency relationship for large explosive volcanic eruptions. Earth and Planetary Science Letters, 482, 621–629. However, perhaps I should not update so strongly because you are right that other estimates are closer to the order of 100,000 years. That is good to think about what it means in terms of existential risk historically. Survivorship bias should not change things too much. Our circumstance is significantly different now. On the plus side, we have more population, more food storage and better knowledge of what is happening. But on the minus side, a super volcanic eruption could raise tensions such that nuclear war breaks out, which would be even worse.

This is fantastic! Thank you for writing this. I think that far too often people see a problem then say, "it's not tractable because I can't think of anything you can do about it" before they've even given it 10 minutes thought. And often causes require far more than 10 minutes thought to come up with some good potential solutions!

That was a really interesting paper!

Has there been any follow up work by you or others to refine your risk estimates, in particular to estimate the change to hazard rate?  

So for example, you consider covering Yellowstone with 25 cm of unconsolidated material as a way to delay the next eruption and give us time to develop technology for a more permanent solution over the next, say, 50 or 100 years.   You estimate that intervention increases the expected value (EV) of the time to the next eruption by 100 years.  So that's great, but I think what we really care about is something more like the hazard rate over the near term: what is the probability of preventing an eruption over next 50 or 100 years ?  If the rate at which the pressure in the magma chamber increases is roughly constant, this distinction doesn't really matter and a 100 year increase in EV means an eruption in the next 50 years is much less likely.  But if it's very far from uniform, the 100 year increase in EV might not be as great as it sounds.  So e.g. say the process is driven by large jumps in pressure on a timescale of every 1000 years or so, then increasing the EV by 100 years is only decreasing the hazard rate by 10%: an eruption in the near term is still 90% as likely after the intervention as before. 

Another consideration is are the dynamics any different between intervening at a random time vs. intervening when there are signs an eruption may be soon (but still enough time to complete the intervention)?

Thanks! Those are good questions. I have not put any more effort into it because resilient foods are likely lower cost to prepare for and protect against multiple catastrophes including super-volcanic eruptions. However, if we can get a few hundred million dollars for resilient foods, maybe working on preventing super-volcanic eruptions will be next on the list…

Your food resilience work is great: fascinating and really important!  Indeed, I first heard of your supervolcano paper via your interview with Rob Wiblin which was primarily about feeding humanity after a catastrophe.  In the grand scheme of things, that's rightly higher priority, but the supervolcano stuff also caught my interest.

I happen to know a couple of volcanologists, so I asked them about your paper.  They weren't familiar with it, but  independently stressed that something quite tractable that  would  benefit from more resources is better monitoring of volcanoes and prediction of eruptions.  

The typical application of forecasting eruptions is evacuation.  But that's sociologically tricky when you inevitably have probabilities far from 1 and uncertain timelines, since an evacuation that ends up appearing unnecessary will lead to low compliance later (the volcanologists "cried wolf").  With interventions to prevent an eruption, that's much less of an issue.  Say you had a forecast  that a certain supervolcano  has a probability of 20% of erupting in the next century, so many orders of magnitude  above base rate.  That's still realistically pretty useless from the point of view of evacuation, but would make your kind of interventions very attractive (if they work in that case).   

So if  it could shown that these interventions are likely tractable even when a potential near term eruption has been detected, then that would justify increased investment both in detection/forecasting and developing these approaches.

Nice. But you don't take reliability and breakdown concerns in your calculation regarding dump trucks. Especially if they are being run 24/7 in night and bad weather conditions, allow for a nontrivial fraction of them to be broken down and under repair at any given time. This could be an enormous problem for the first few years of action because repair and maintenance services don't exist in such a high concentration to handle so many heavy vehicles in a remote location.

Also, see how many such vehicles are owned by the US National Guard, Seabees, etc. They may not be listed in the FHA's statistics.

Thanks for your careful read. I suggested 160 hours per week operating, which allows for 8 hours a week for fueling, scheduled maintenance, and unscheduled maintenance. This is probably optimistic, but I think my estimates are low by an order of magnitude compared to what we could do with non-dumptrucks (though these would likely require retrofitting).

Curated and popular this week
 ·  · 20m read
 · 
Advanced AI could unlock an era of enlightened and competent government action. But without smart, active investment, we’ll squander that opportunity and barrel blindly into danger. Executive summary See also a summary on Twitter / X. The US federal government is falling behind the private sector on AI adoption. As AI improves, a growing gap would leave the government unable to effectively respond to AI-driven existential challenges and threaten the legitimacy of its democratic institutions. A dual imperative → Government adoption of AI can’t wait. Making steady progress is critical to: * Boost the government’s capacity to effectively respond to AI-driven existential challenges * Help democratic oversight keep up with the technological power of other groups * Defuse the risk of rushed AI adoption in a crisis → But hasty AI adoption could backfire. Without care, integration of AI could: * Be exploited, subverting independent government action * Lead to unsafe deployment of AI systems * Accelerate arms races or compress safety research timelines Summary of the recommendations 1. Work with the US federal government to help it effectively adopt AI Simplistic “pro-security” or “pro-speed” attitudes miss the point. Both are important — and many interventions would help with both. We should: * Invest in win-win measures that both facilitate adoption and reduce the risks involved, e.g.: * Build technical expertise within government (invest in AI and technical talent, ensure NIST is well resourced) * Streamline procurement processes for AI products and related tech (like cloud services) * Modernize the government’s digital infrastructure and data management practices * Prioritize high-leverage interventions that have strong adoption-boosting benefits with minor security costs or vice versa, e.g.: * On the security side: investing in cyber security, pre-deployment testing of AI in high-stakes areas, and advancing research on mitigating the ris
 ·  · 32m read
 · 
Summary Immediate skin-to-skin contact (SSC) between mothers and newborns and early initiation of breastfeeding (EIBF) may play a significant and underappreciated role in reducing neonatal mortality. These practices are distinct in important ways from more broadly recognized (and clearly impactful) interventions like kangaroo care and exclusive breastfeeding, and they are recommended for both preterm and full-term infants. A large evidence base indicates that immediate SSC and EIBF substantially reduce neonatal mortality. Many randomized trials show that immediate SSC promotes EIBF, reduces episodes of low blood sugar, improves temperature regulation, and promotes cardiac and respiratory stability. All of these effects are linked to lower mortality, and the biological pathways between immediate SSC, EIBF, and reduced mortality are compelling. A meta-analysis of large observational studies found a 25% lower risk of mortality in infants who began breastfeeding within one hour of birth compared to initiation after one hour. These practices are attractive targets for intervention, and promoting them is effective. Immediate SSC and EIBF require no commodities, are under the direct influence of birth attendants, are time-bound to the first hour after birth, are consistent with international guidelines, and are appropriate for universal promotion. Their adoption is often low, but ceilings are demonstrably high: many low-and middle-income countries (LMICs) have rates of EIBF less than 30%, yet several have rates over 70%. Multiple studies find that health worker training and quality improvement activities dramatically increase rates of immediate SSC and EIBF. There do not appear to be any major actors focused specifically on promotion of universal immediate SSC and EIBF. By contrast, general breastfeeding promotion and essential newborn care training programs are relatively common. More research on cost-effectiveness is needed, but it appears promising. Limited existing
 ·  · 11m read
 · 
Our Mission: To build a multidisciplinary field around using technology—especially AI—to improve the lives of nonhumans now and in the future.  Overview Background This hybrid conference had nearly 550 participants and took place March 1-2, 2025 at UC Berkeley. It was organized by AI for Animals for $74k by volunteer core organizers Constance Li, Sankalpa Ghose, and Santeri Tani.  This conference has evolved since 2023: * The 1st conference mainly consisted of philosophers and was a single track lecture/panel. * The 2nd conference put all lectures on one day and followed it with 2 days of interactive unconference sessions happening in parallel and a week of in-person co-working. * This 3rd conference had a week of related satellite events, free shared accommodations for 50+ attendees, 2 days of parallel lectures/panels/unconferences, 80 unique sessions, of which 32 are available on Youtube, Swapcard to enable 1:1 connections, and a Slack community to continue conversations year round. We have been quickly expanding this conference in order to prepare those that are working toward the reduction of nonhuman suffering to adapt to the drastic and rapid changes that AI will bring.  Luckily, it seems like it has been working!  This year, many animal advocacy organizations attended (mostly smaller and younger ones) as well as newly formed groups focused on digital minds and funders who spanned both of these spaces. We also had more diversity of speakers and attendees which included economists, AI researchers, investors, tech companies, journalists, animal welfare researchers, and more. This was done through strategic targeted outreach and a bigger team of volunteers.  Outcomes On our feedback survey, which had 85 total responses (mainly from in-person attendees), people reported an average of 7 new connections (defined as someone they would feel comfortable reaching out to for a favor like reviewing a blog post) and of those new connections, an average of 3