https://www.openphilanthropy.org/blog/how-feasible-long-range-forecasting (a)
The opening:
How accurate do long-range (≥10yr) forecasts tend to be, and how much should we rely on them?
As an initial exploration of this question, I sought to study the track record of long-range forecasting exercises from the past. Unfortunately, my key finding so far is that it is difficult to learn much of value from those exercises, for the following reasons:
1. Long-range forecasts are often stated too imprecisely to be judged for accuracy. [More]
2. Even if a forecast is stated precisely, it might be difficult to find the information needed to check the forecast for accuracy. [More]
3. Degrees of confidence for long-range forecasts are rarely quantified. [More]
4. In most cases, no comparison to a “baseline method” or “null model” is possible, which makes it difficult to assess how easy or difficult the original forecasts were. [More]
5. Incentives for forecaster accuracy are usually unclear or weak. [More]
6. Very few studies have been designed so as to allow confident inference about which factors contributed to forecasting accuracy. [More]
7. It’s difficult to know how comparable past forecasting exercises are to the forecasting we do for grantmaking purposes, e.g. because the forecasts we make are of a different type, and because the forecasting training and methods we use are different. [More]
I'd be interested to know how people think long-range forecasting is likely to differ from short-range forecasting, and to what degree we can apply findings from short-range forecasting to long-range forecasting. Could it be possible to, for example, ask forecasters to forecast at a variety of short-range timescales, fit a curve to their accuracy as a function of time (or otherwise try to mathematically model the "half-life" of the knowledge powering the forecast--I don't know what methodologies could be useful here, maybe survival analysis?) and extrapolate this model to long-range timescales?
I'm also curious why there isn't more interest in presenting people with historical scenarios and asking them to forecast what will happen next in the historical scenario. Obviously if they already know about that period of history this won't work, but that seems possible to overcome.
I'm not sure what you mean by resolution. But if you mean accuracy, perhaps a counter example is the reversion of stock values to the long-term mean appreciation curve creating value forecasts that actually become more accurate five or 10 years out than in the near term?