(Crossposted to LessWrong)
Abstract
The linked paper is our submission to the Open Philanthropy AI Worldviews Contest. In it, we estimate the likelihood of transformative artificial general intelligence (AGI) by 2043 and find it to be <1%.
Specifically, we argue:
- The bar is high: AGI as defined by the contest—something like AI that can perform nearly all valuable tasks at human cost or less—which we will call transformative AGI is a much higher bar than merely massive progress in AI, or even the unambiguous attainment of expensive superhuman AGI or cheap but uneven AGI.
- Many steps are needed: The probability of transformative AGI by 2043 can be decomposed as the joint probability of a number of necessary steps, which we group into categories of software, hardware, and sociopolitical factors.
- No step is guaranteed: For each step, we estimate a probability of success by 2043, conditional on prior steps being achieved. Many steps are quite constrained by the short timeline, and our estimates range from 16% to 95%.
- Therefore, the odds are low: Multiplying the cascading conditional probabilities together, we estimate that transformative AGI by 2043 is 0.4% likely. Reaching >10% seems to require probabilities that feel unreasonably high, and even 3% seems unlikely.
Thoughtfully applying the cascading conditional probability approach to this question yields lower probability values than is often supposed. This framework helps enumerate the many future scenarios where humanity makes partial but incomplete progress toward transformative AGI.
Executive summary
For AGI to do most human work for <$25/hr by 2043, many things must happen.
We forecast cascading conditional probabilities for 10 necessary events, and find they multiply to an overall likelihood of 0.4%:
Event | Forecastby 2043 or TAGI, |
We invent algorithms for transformative AGI | 60% |
We invent a way for AGIs to learn faster than humans | 40% |
AGI inference costs drop below $25/hr (per human equivalent) | 16% |
We invent and scale cheap, quality robots | 60% |
We massively scale production of chips and power | 46% |
We avoid derailment by human regulation | 70% |
We avoid derailment by AI-caused delay | 90% |
We avoid derailment from wars (e.g., China invades Taiwan) | 70% |
We avoid derailment from pandemics | 90% |
We avoid derailment from severe depressions | 95% |
Joint odds | 0.4% |
If you think our estimates are pessimistic, feel free to substitute your own here. You’ll find it difficult to arrive at odds above 10%.
Of course, the difficulty is by construction. Any framework that multiplies ten probabilities together is almost fated to produce low odds.
So a good skeptic must ask: Is our framework fair?
There are two possible errors to beware of:
- Did we neglect possible parallel paths to transformative AGI?
- Did we hew toward unconditional probabilities rather than fully conditional probabilities?
We believe we are innocent of both sins.
Regarding failing to model parallel disjunctive paths:
- We have chosen generic steps that don’t make rigid assumptions about the particular algorithms, requirements, or timelines of AGI technology
- One opinionated claim we do make is that transformative AGI by 2043 will almost certainly be run on semiconductor transistors powered by electricity and built in capital-intensive fabs, and we spend many pages justifying this belief
Regarding failing to really grapple with conditional probabilities:
- Our conditional probabilities are, in some cases, quite different from our unconditional probabilities. In particular, we assume that a world on track to transformative AGI will…
- Construct semiconductor fabs and power plants at a far faster pace than today (our unconditional probability is substantially lower)
- Have invented very cheap and efficient chips by today’s standards (our unconditional probability is substantially lower)
- Have higher risks of disruption by regulation
- Have higher risks of disruption by war
- Have lower risks of disruption by natural pandemic
- Have higher risks of disruption by engineered pandemic
Therefore, for the reasons above—namely, that transformative AGI is a very high bar (far higher than “mere” AGI) and many uncertain events must jointly occur—we are persuaded that the likelihood of transformative AGI by 2043 is <1%, a much lower number than we otherwise intuit. We nonetheless anticipate stunning advancements in AI over the next 20 years, and forecast substantially higher likelihoods of transformative AGI beyond 2043.
For details, read the full paper.
About the authors
This essay is jointly authored by Ari Allyn-Feuer and Ted Sanders. Below, we share our areas of expertise and track records of forecasting. Of course, credentials are no guarantee of accuracy. We share them not to appeal to our authority (plenty of experts are wrong), but to suggest that if it sounds like we’ve said something obviously wrong, it may merit a second look (or at least a compassionate understanding that not every argument can be explicitly addressed in an essay trying not to become a book).
Ari Allyn-Feuer
Areas of expertise
I am a decent expert in the complexity of biology and using computers to understand biology.
- I earned a Ph.D. in Bioinformatics at the University of Michigan, where I spent years using ML methods to model the relationships between the genome, epigenome, and cellular and organismal functions. At graduation I had offers to work in the AI departments of three large pharmaceutical and biotechnology companies, plus a biological software company.
- I have spent the last five years as an AI Engineer, later Product Manager, now Director of AI Product, in the AI department of GSK, an industry-leading AI group which uses cutting edge methods and hardware (including Cerebras units and work with quantum computing), is connected with leading academics in AI and the epigenome, and is particularly engaged in reinforcement learning research.
Track record of forecasting
While I don’t have Ted’s explicit formal credentials as a forecaster, I’ve issued some pretty important public correctives of then-dominant narratives:
- I said in print on January 24, 2020 that due to its observed properties, the then-unnamed novel coronavirus spreading in Wuhan, China, had a significant chance of promptly going pandemic and killing tens of millions of humans. It subsequently did.
- I said in print in June 2020 that it was an odds-on favorite for mRNA and adenovirus COVID-19 vaccines to prove highly effective and be deployed at scale in late 2020. They subsequently did and were.
- I said in print in 2013 when the Hyperloop proposal was released that the technical approach of air bearings in overland vacuum tubes on scavenged rights of way wouldn’t work. Subsequently, despite having insisted they would work and spent millions of dollars on them, every Hyperloop company abandoned all three of these elements, and development of Hyperloops has largely ceased.
- I said in print in 2016 that Level 4 self-driving cars would not be commercialized or near commercialization by 2021 due to the long tail of unusual situations, when several major car companies said they would. They subsequently were not.
- I used my entire net worth and borrowing capacity to buy an abandoned mansion in 2011, and sold it seven years later for five times the price.
Luck played a role in each of these predictions, and I have also made other predictions that didn’t pan out as well, but I hope my record reflects my decent calibration and genuine open-mindedness.
Ted Sanders
Areas of expertise
I am a decent expert in semiconductor technology and AI technology.
- I earned a PhD in Applied Physics from Stanford, where I spent years researching semiconductor physics and the potential of new technologies to beat the 60 mV/dec limit of today's silicon transistor (e.g., magnetic computing, quantum computing, photonic computing, reversible computing, negative capacitance transistors, and other ideas). These years of research inform our perspective on the likelihood of hardware progress over the next 20 years.
- After graduation, I had the opportunity to work at Intel R&D on next-gen computer chips, but instead, worked as a management consultant in the semiconductor industry and advised semiconductor CEOs on R&D prioritization and supply chain strategy. These years of work inform our perspective on the difficulty of rapidly scaling semiconductor production.
- Today, I work on AGI technology as a research engineer at OpenAI, a company aiming to develop transformative AGI. This work informs our perspective on software progress needed for AGI. (Disclaimer: nothing in this essay reflects OpenAI’s beliefs or its non-public information.)
Track record of forecasting
I have a track record of success in forecasting competitions:
- Top prize in SciCast technology forecasting tournament (15 out of ~10,000, ~$2,500 winnings)
- Top Hypermind US NGDP forecaster in 2014 (1 out of ~1,000)
- 1st place Stanford CME250 AI/ML Prediction Competition (1 of 73)
- 2nd place ‘Let’s invent tomorrow’ Private Banking prediction market (2 out of ~100)
- 2nd place DAGGRE Workshop competition (2 out of ~50)
- 3rd place LG Display Futurecasting Tournament (3 out of 100+)
- 4th Place SciCast conditional forecasting contest
- 9th place DAGGRE Geopolitical Forecasting Competition
- 30th place Replication Markets (~$1,000 winnings)
- Winner of ~$4200 in the 2022 Hybrid Persuasion-Forecasting Tournament on existential risks (told ranking was “quite well”)
Each finish resulted from luck alongside skill, but in aggregate I hope my record reflects my decent calibration and genuine open-mindedness.
Discussion
We look forward to discussing our essay with you in the comments below. The more we learn from you, the more pleased we'll be.
If you disagree with our admittedly imperfect guesses, we kindly ask that you supply your own preferred probabilities (or framework modifications). It's easier to tear down than build up, and we'd love to hear how you think this analysis can be improved.
I don't think I understand the structure of this estimate, or else I might understand and just be skeptical of it. Here are some quick questions and points of skepticism.
Starting from the top, you say:
This section appears to be an estimate of all-things-considered feasibility of transformative AI, and draws extensively on evidence about how lots of things go wrong in practice when implementing complicated projects. But then in subsequent sections you talk about how even if we "succeed" at this step there is still a significant probability of failing because the algorithms don't work in a realistic amount of time.
Can you say what exactly you are assigning a 60% probability to, and why it's getting multiplied with ten other factors? Are you saying that there is a 40% chance that by 2043 AI algorithms couldn't yield AGI no matter how much serial time and compute they had available? (It seems surprising to claim that even by 2023!) Presumably not that, but what exactly are you giving a 60% chance?
(ETA: after reading later sections more carefully I think you might be saying 60% chance that our software is about as good as nature's, and maybe implicitly assuming there is a ~0% chance of being significantly better than that or building TAI without that? I'm not sure if that's right though, if so it's a huge point of methodological disagreement. I'll return to this point later.)
In section 2 you say:
And give this a 40% probability. I don't think I understand this claim or its justification. (This is related to my uncertainty about what your "60%" in the last section was referring to.)
It seems to me that if you had human-like learning you would be able to produce transformative AGI by 2043:
I think you are disagreeing with these claims, but I'm not sure about that. For example, you mention parallelizable learning but seem to give it <10% probability despite the fact that it is the overwhelmingly dominant paradigm in current practice and you don't say anything about why it might not work.
(This isn't super relevant to my mainline view, since in fact I think AI is much worse at learning quickly than humans and will likely be transformative way before reaching parity. This is related to the general point about being unnecessarily conjunctive, but here I'm just trying to understand and express disagreement with the particular path you lay out and the probabilities you assign.)
In section 3 you say:
I think you claim that each synapse firing event requires about 1-10 million floating point operations (with some error bars), and that there is only a 16% chance that computers will be able to do enough compute for $25/hour.
This is probably the part of the report I am most skeptical of:
(ETA: this criticism of section 3 is unfair: you do discuss the prospect of much better than human performance in the 2-page section "On the computational intensity of AGI," and indeed this plays a completely central role in your bottom line estimate. But I'm still left wondering what the earlier 60% and 40% (and all the other numbers!) are supposed to represent, given that you are apparently putting all the work of "maybe humans will design efficient algorithms that are as good as the brain" in this section. You also don't really discuss existing experience, where your estimates already appear to be many orders of magnitude off in domains where it is easiest to make comparisons between biology and ML (like vision or classical control) and where I don't see how to argue we aren't already 1000x better than biology using your 10 million flops per synapse number. Aside from me disagreeing with your mean, you describe these as conservative error bars since they put 20% probability on 1000x improvements over biology, but I think that's really not the case given that it includes uncertainty about the useful compute done by the brain (where you already disagree by >>3 OOMs with plausible estimates) as well as algorithmic progress (where 1000x improvements over 20 years seem common both within software and ML).)
I'll stop here rather than going on to sections 4+, though I think I have a lot to object to along similar lines (primarily that the story is being made unreasonably conjunctive).
Overall your estimation strategy looks crazy to me and I'm skeptical of the the implicit claim that this kind of methodology would perform well in historical examples. That said, if this sort of methodology actually does work well in practice then I think that trumps some a priori speculation and would be an important thing for me to really absorb. Your personal forecasting successes seem like a big part of the evidence for that, so it might be helpful to understand what kinds of predictions were involved and how methodologically analogous they are. Superficially it looks like the SciCast technology forecasting tournament is by far the most relevant; is there a pointer to the list of questions (other info like participants and list of predictions would also be awesome if available)? Or do you think one of the other items is more relevant?
It's worth noting that I think that GPT5 (with finetuning and scaffolding, etc.) is perhaps around 2% likely to be AGI. Of course, you'd need serious robotic infrastructure and much larger pool of GPUs to automate all labor.