Hide table of contents

Eric Drexler's report Reframing Superintelligence: Comprehensive AI Services (CAIS) as General Intelligence reshaped how a lot of people think about AI (summary 1, summary 2). I still agree with many parts of it, perhaps even the core elements of the model. However, after looking back on it more than four years later, I think the general picture it gave missed some crucial details about how AI will go.

The problem seems to be that his report neglected a discussion of foundation models, which I think have transformed how we should think about AI services and specialization. 

The general vibe I got from CAIS (which may not have been Drexler's intention) was something like the following picture: 

For each task in the economy, we will train a model from scratch to automate the task, using the minimum compute necessary to train an AI to do well on the task. Over time, the fraction of tasks automated will slowly expand like a wave, starting with the tasks that are cheapest to automate computationally, and ending with the most expensive tasks. At some point, automation will be so widespread that it will begin to meaningfully feed into itself, increasing AI R&D, and accelerating the rate of technological progress.

The problem with this approach to automation is that it's extremely wasteful to train models from scratch for each task. It might make sense when training budgets are tiny — as they mostly were in 2018 — but it doesn't make sense when it takes 10^25 FLOP to reach adequate performance on a given set of tasks.

The big obvious-in-hindsight idea that we've gotten over the last several years is that, instead of training from scratch for each new task, we'll train train a foundation model on some general distribution, which can then be fine-tuned using small amounts of compute to perform well on any task. In the CAIS model, "general intelligence" is just the name we can give to the collection of all AI services in the economy. In this new paradigm, "general intelligence" refers to the fact that sufficiently large foundation models can efficiently transfer their knowledge to obtain high performance on almost any downstream task, which is pretty closely analogous to what humans do to take over jobs.

The fact that generalist models can be efficiently adapted to perform well on almost any task is an incredibly important fact about our world, because it implies that a very large fraction of the costs of automation can be parallelized across almost all tasks. 

Let me illustrate this fact with a hypothetical example.

Suppose we previously thought that it would take $1 trillion to automate each task in our economy, such as language translation, box stacking, and driving cars. Since the cost of automating each of these tasks is $1 trillion each, you might expect companies would slowly automate all the tasks in the economy, starting with the most profitable ones, and then finally getting around to the least profitable ones once economic growth allowed for us to spend enough money on automating not-very-profitable stuff. 

But now suppose we think it costs $999 billion to create "general intelligence", which then once built, can be quickly adapted to automate any other task at a cost of $1 billion. In this world, we will go very quickly from being able to automate almost nothing to being able to automate almost anything. In other words we will get one big innovation "lump", which is the opposite of what Robin Hanson predicted. Even if we won't invent monolithic agents that take over the world by being smarter than everything else, we won't have a gradual decades-long ramp-up to full automation either.

Of course, the degree of suddenness in the foundation model paradigm is still debatable, because the idea of "general intelligence" is itself continuous. GPT-4 is more general than GPT-3, which was more general than GPT-2, and presumably this trend will smoothly continue indefinitely as a function of scale, rather than shooting up discontinuously after some critical threshold. But results in the last year or so have updated me towards thinking that the range from "barely general enough to automate a few valuable tasks" to "general enough to automate almost everything humans do" is only 5-10 OOMs of training compute. If this range turns out to be 5 OOMs, then I expect a fast AI takeoff under Paul Christiano's definition, even though I still don't think this picture looks much like the canonical version of foom.

Foundation models also change the game because they imply that AI development must be highly concentrated at the firm-level. AIs themselves might be specialized to provide various services, but the AI economy depends critically on a few non-specialized firms that deliver the best foundation models at any given time. There can only be a few firms in the market providing foundation models because the fixed capital costs required to train a SOTA foundation model are very high, and being even 2 OOMs behind the lead actor results in effectively zero market share. Although these details are consistent with CAIS, it's a major update about what the future AI ecosystem will look like.

A reasonable remaining question is why we'd ever expect AIs to be specialized in the foundation model paradigm. I think the reason is that generalist models are more costly to run at inference time compared to specialized ones. After fine-tuning, you will want to compress the model as much as possible, while maintaining acceptable performance on whatever task you're automating.

The degree of specialization will vary according to the task you want to automate. Some tasks require very general abilities to do well. For example, being a CEO plausibly benefits from being extremely general, way beyond even human-level, such that it wouldn't make sense to make them less general even if it saved inference costs. On the other hand, language translation is plausibly something that can be accomplished acceptably using far less compute than a CEO model. In that case, you want inference costs to be much lower.

It now seems clear that AIs will also descend more directly from a common ancestor than you might have naively expected in the CAIS model, since most important AIs will be a modified version of one of only a few base foundation models. That has important safety implications, since problems in the base model might carry over to problems in the downstream models, which will be spread throughout the economy. That said, the fact that foundation model development will be highly centralized, and thus controllable, is perhaps a safety bonus that loosely cancels out this consideration.

Drexler can be forgiven for not talking about foundation models in his report. His report was published at the start of 2019, just months after the idea of "fine-tuning" was popularized in the context of language models, and two months before GPT-2 came out. And many readers can no doubt point out many non-trivial predictions that Drexler got right, such as the idea that we will have millions of AIs, rather than just one huge system that acts as a unified entity. And we're still using deep learning as Drexler foresaw, rather than building general intelligence like a programmer would. Like I said at the beginning, it's not necessarily that the core elements of the CAIS model are wrong; the model just needs an update.

No comments on this post yet.
Be the first to respond.
Curated and popular this week
 ·  · 38m read
 · 
In recent months, the CEOs of leading AI companies have grown increasingly confident about rapid progress: * OpenAI's Sam Altman: Shifted from saying in November "the rate of progress continues" to declaring in January "we are now confident we know how to build AGI" * Anthropic's Dario Amodei: Stated in January "I'm more confident than I've ever been that we're close to powerful capabilities... in the next 2-3 years" * Google DeepMind's Demis Hassabis: Changed from "as soon as 10 years" in autumn to "probably three to five years away" by January. What explains the shift? Is it just hype? Or could we really have Artificial General Intelligence (AGI)[1] by 2028? In this article, I look at what's driven recent progress, estimate how far those drivers can continue, and explain why they're likely to continue for at least four more years. In particular, while in 2024 progress in LLM chatbots seemed to slow, a new approach started to work: teaching the models to reason using reinforcement learning. In just a year, this let them surpass human PhDs at answering difficult scientific reasoning questions, and achieve expert-level performance on one-hour coding tasks. We don't know how capable AGI will become, but extrapolating the recent rate of progress suggests that, by 2028, we could reach AI models with beyond-human reasoning abilities, expert-level knowledge in every domain, and that can autonomously complete multi-week projects, and progress would likely continue from there.  On this set of software engineering & computer use tasks, in 2020 AI was only able to do tasks that would typically take a human expert a couple of seconds. By 2024, that had risen to almost an hour. If the trend continues, by 2028 it'll reach several weeks.  No longer mere chatbots, these 'agent' models might soon satisfy many people's definitions of AGI — roughly, AI systems that match human performance at most knowledge work (see definition in footnote). This means that, while the compa
 ·  · 4m read
 · 
SUMMARY:  ALLFED is launching an emergency appeal on the EA Forum due to a serious funding shortfall. Without new support, ALLFED will be forced to cut half our budget in the coming months, drastically reducing our capacity to help build global food system resilience for catastrophic scenarios like nuclear winter, a severe pandemic, or infrastructure breakdown. ALLFED is seeking $800,000 over the course of 2025 to sustain its team, continue policy-relevant research, and move forward with pilot projects that could save lives in a catastrophe. As funding priorities shift toward AI safety, we believe resilient food solutions remain a highly cost-effective way to protect the future. If you’re able to support or share this appeal, please visit allfed.info/donate. Donate to ALLFED FULL ARTICLE: I (David Denkenberger) am writing alongside two of my team-mates, as ALLFED’s co-founder, to ask for your support. This is the first time in Alliance to Feed the Earth in Disaster’s (ALLFED’s) 8 year existence that we have reached out on the EA Forum with a direct funding appeal outside of Marginal Funding Week/our annual updates. I am doing so because ALLFED’s funding situation is serious, and because so much of ALLFED’s progress to date has been made possible through the support, feedback, and collaboration of the EA community.  Read our funding appeal At ALLFED, we are deeply grateful to all our supporters, including the Survival and Flourishing Fund, which has provided the majority of our funding for years. At the end of 2024, we learned we would be receiving far less support than expected due to a shift in SFF’s strategic priorities toward AI safety. Without additional funding, ALLFED will need to shrink. I believe the marginal cost effectiveness for improving the future and saving lives of resilience is competitive with AI Safety, even if timelines are short, because of potential AI-induced catastrophes. That is why we are asking people to donate to this emergency appeal
 ·  · 1m read
 · 
We’ve written a new report on the threat of AI-enabled coups.  I think this is a very serious risk – comparable in importance to AI takeover but much more neglected.  In fact, AI-enabled coups and AI takeover have pretty similar threat models. To see this, here’s a very basic threat model for AI takeover: 1. Humanity develops superhuman AI 2. Superhuman AI is misaligned and power-seeking 3. Superhuman AI seizes power for itself And now here’s a closely analogous threat model for AI-enabled coups: 1. Humanity develops superhuman AI 2. Superhuman AI is controlled by a small group 3. Superhuman AI seizes power for the small group While the report focuses on the risk that someone seizes power over a country, I think that similar dynamics could allow someone to take over the world. In fact, if someone wanted to take over the world, their best strategy might well be to first stage an AI-enabled coup in the United States (or whichever country leads on superhuman AI), and then go from there to world domination. A single person taking over the world would be really bad. I’ve previously argued that it might even be worse than AI takeover. [1] The concrete threat models for AI-enabled coups that we discuss largely translate like-for-like over to the risk of AI takeover.[2] Similarly, there’s a lot of overlap in the mitigations that help with AI-enabled coups and AI takeover risk — e.g. alignment audits to ensure no human has made AI secretly loyal to them, transparency about AI capabilities, monitoring AI activities for suspicious behaviour, and infosecurity to prevent insiders from tampering with training.  If the world won't slow down AI development based on AI takeover risk (e.g. because there’s isn’t strong evidence for misalignment), then advocating for a slow down based on the risk of AI-enabled coups might be more convincing and achieve many of the same goals.  I really want to encourage readers — especially those at labs or governments — to do something