Hide table of contents


This post is the first part of my summary of The Precipice, by Toby Ord. It is about what existential risks are, and it explores the natural sources of existential risks. Future posts will explore the danger from other sources, our place in the story of humanity, and the importance of reducing existential risk.

What is an existential risk?

An existential catastrophe is any event that would destroy humanity’s potential. This could take a few forms:[1]

  • Ordinary extinction: Every human on Earth dies, or there are too few survivors to repopulate it.
  • Permanent civilisational collapse: An enormous catastrophe collapses civilisation and severely damages the environment in a way that makes it impossible to rebuild. This would be a world without writing, cities, and law. A collapse of civilisation might or might not be an existential catastrophe; it depends on whether we can rebuild.
  • A world in chains: The entire world is locked under totalitarian rule. Advanced technology allows permanent and powerful indoctrination, surveillance, and enforcement, leaving no chance for an uprising and no internal or external pressure to change. Like civilisational collapse, this presents an existential catastrophe if the situation is permanent. 

How can we estimate the danger?

One way is to assume the risk is negligible until there is strong scientific evidence determining that it is higher. This ensures that risks are not exaggerated but does not usually reflect our current understanding of the risks and might lead to dangerous underestimation of emerging risks.[2] Instead, Toby Ord begins with an initial impression of the size of the risk, then adjusts this estimate according to the scientific evidence.

The sources of natural extinction risk

Asteroids and comets

Sixty-six million years ago an asteroid hit Earth off the coast of Mexico, burning everything within 1,000 kilometres. The worst effects were caused by a billowing cloud of dust and ash (and sulphate aerosols from the vaporised sea floor) which blocked out the sun and cooled Earth. In the end, every land vertebrate over five kilograms went extinct (Longrich, Scriberas and Wills, 2016).

Supervolcanic eruptions

The very largest volcanic eruptions don’t look like typical volcanoes. Instead of mountains spilling out molten rock, supervolcanoes collapse into a vast craterlike depression (a well-known example is the Yellowstone caldera). One of these eruptions happened 74,000 years ago in Indonesia. Glowing rocks rained down as far as 100 kilometres away, and places as far away as India were covered in a metre-thick blanket of ash. Although this was not close to being an extinction-level event, supervolcanic eruptions present a small risk of civilisational collapse.[3] Even though we could likely rebuild civilisation, most of the extinction risk here is driven by the possibility of permanent civilisational collapse.  

Stellar explosions

Sometimes large stars explode, instantly releasing the same amount of energy as our sun will over its 10-billion-year lifetime. If this happened close to Earth, it could alter the climate and erode the ozone layer, leaving us exposed to UV radiation.

Estimating natural extinction risk

There are many other potential dangers.[4] And our understanding of natural risks is recent and growing. It was only in the 1960s that we learned that Earth may have been hit by a large asteroid and we detected the first signs of the bursts of energy emitted by exploding stars. There has been no slowdown in our discovery of new risks, and we do not know what caused several historical mass-extinction events. We should expect to learn about new sources of extinction risk in the coming decades.

Luckily, we can estimate the total natural extinction risk without complete knowledge of the individual risks by examining our track record. Homo sapiens have survived for over 200,000 years. If the risk had been 1% per century, then there would have been a 99.9999998% chance that we would have gone extinct by now. Based on this, we can be extremely confident that the risk is below 0.34% per century, and our best guess is that the risk is below 0.05% per century.[5]

We might also consider that humans have spread to diverse environments all over the planet, so it’s likely that only mass-extinction events truly threaten us. There have been five of these events since complex life developed — over 540 million years ago— making the extinction risk one in a million (0.0001%) per century.

Where possible, we can supplement this track record with our scientific understanding of the risks to get estimates for individual risks that are sometimes substantially lower than our track record suggests. For instance, we have identified about 95% of the asteroids less than 10 kilometres in diameter and likely all asteroids greater than 10 kilometres across; and we know none are going to hit us this century. Astronomers have also estimated the chances of a stellar explosion close enough to destroy 30% of the ozone layer at about one in 5 million.[6]

Overall, the picture is incredibly reassuring. While it would be prudent to continue to improve our scientific understanding of these risks and monitor them, these risks are very small over the next century.

The next post will begin to explore the existential risks caused by nuclear weapons, climate change, advanced biotechnology, and artificial intelligence. 

You can sign up to email notifications here.
 

Image of the earth from: www.tobyord.com/earth

Sources

Nick Bostrom (2002). Existential Risks: Analyzing Human Extinction Scenarios and Related HazardsJournal of Evolution and Technology 9.

Nick Bostrom (2013). Existential Risk Prevention as Global Priority. Global Policy 4/1.

Dario Buttazzo, Giuseppe Degrassi, Pier Paolo Giardino, Gian F Giudice, Filippo Sala, Alberto Salvio & Alessandro Strumia (2013). Investigating the Near-Criticality of the Higgs Boson. Journal of High Energy Physics 2013/89.

Nicholas R Longrich, J Scriberas, and Matthew A Wills (2016). Severe Extinction and Rapid Recovery of Mammals across the Cretaceous-Palaeogene Boundary, and the Effects of Rarity on Patterns of Extinction and Recovery. Journal of Evolutionary Biology 29.

Max Tegmark and Nick Bostrom (2005). Is a Doomsday Catastrophe Likely? Nature 438.
 

  1. ^

    See Bostrom (2002, 2013).

  2. ^

    For instance, this method would conclude that the extinction risks from climate change are negligible because the scientific evidence does not show conclusively that even extreme climate scenarios would result in human extinction. But extreme climate scenarios have also been largely neglected by researchers, and rapidly increasing our carbon emissions could have currently unforeseen harmful effects. Until new research shows that rapid warming simply cannot drive us extinct, we cannot be confident that the risk is extremely low. Ord estimates the extinction risk from climate change to be around 1 in 1,000 this century, as we will see in the next two parts of this summary.

  3. ^

    As with asteroids, the biggest threat comes from the dark cloud of volcanic dust and sulphate aerosols that would block out the sun and cool Earth. There is a lot of uncertainty about how much previous eruptions have cooled Earth (estimates from the Toba volcano in Indonesia range from 0.8 to 18 degrees Celsius of cooling, with the best estimates around 1–2 degrees). With only six months of food reserves, a supervolcanic eruption could result in the starvation of billions of people and the collapse of civilisation.

  1. ^

    Many pose no risk of extinction— for instance, catastrophes such as hurricanes or tsunamis. Some risks are vanishingly small over the coming century. For instance, there is little chance of another ice age over the next thousand years or another star passing through our solar system in the next few billion years; and for the next billion years there is little risk from the eventual brightening of our sun. Other risks are vanishingly small in general. For instance, some physical theories suggest that space is not a true vacuum and could collapse to a true vacuum state. However, Tegmark and Bostrom (2005) argue that we can have 99.9% confidence that the risk is less than one in a billion per year. Others suggest it is much lower (Buttazzo et al., 2013) or endorse a theory of physics in which space is already a true vacuum and so this poses no risk.

  2. ^

    Other, similar ways of estimating the risks give similarly low results, with best-guess estimates always below 0.05%. It’s plausible that we should consider humans inclusively, to include Neanderthals or perhaps the entire genus Homo. If so, we will arrive at lower best-guess estimates. Alternatively, we could consider the extinction of other species in our genus to be indicative of our own chances, which would give a best-guess estimate of at most 0.05% per century. We would get lower best-guess estimates if we looked at other mammals, or indeed other species in general. These estimates are likely to be overestimates because they include noncatastrophic extinction (for instance, gradual evolution into a new species) and because humanity has spread to a variety of environments and developed technologies that could help protect it from natural risks.

  3. ^

    We face a similar risk from bursts of gamma rays, thought to be the result of a particular kind of exploding star or the collision of neutron stars. These have the same energy release as a normal exploding star but concentrated into two narrow cones. This risk is estimated to be about one in 2.5 million. Searching the skies, we see no likely candidates for such stellar explosions or collisions, but we cannot entirely rule them out, yielding a moderately reduced risk this century in particular.

Show all footnotes
Comments


No comments on this post yet.
Be the first to respond.
Curated and popular this week
 ·  · 5m read
 · 
[Cross-posted from my Substack here] If you spend time with people trying to change the world, you’ll come to an interesting conundrum: Various advocacy groups reference previous successful social movements as to why their chosen strategy is the most important one. Yet, these groups often follow wildly different strategies from each other to achieve social change. So, which one of them is right? The answer is all of them and none of them. This is because many people use research and historical movements to justify their pre-existing beliefs about how social change happens. Simply, you can find a case study to fit most plausible theories of how social change happens. For example, the groups might say: * Repeated nonviolent disruption is the key to social change, citing the Freedom Riders from the civil rights Movement or Act Up! from the gay rights movement. * Technological progress is what drives improvements in the human condition if you consider the development of the contraceptive pill funded by Katharine McCormick. * Organising and base-building is how change happens, as inspired by Ella Baker, the NAACP or Cesar Chavez from the United Workers Movement. * Insider advocacy is the real secret of social movements – look no further than how influential the Leadership Conference on Civil Rights was in passing the Civil Rights Acts of 1960 & 1964. * Democratic participation is the backbone of social change – just look at how Ireland lifted a ban on abortion via a Citizen’s Assembly. * And so on… To paint this picture, we can see this in action below: Source: Just Stop Oil which focuses on…civil resistance and disruption Source: The Civic Power Fund which focuses on… local organising What do we take away from all this? In my mind, a few key things: 1. Many different approaches have worked in changing the world so we should be humble and not assume we are doing The Most Important Thing 2. The case studies we focus on are likely confirmation bias, where
 ·  · 2m read
 · 
I speak to many entrepreneurial people trying to do a large amount of good by starting a nonprofit organisation. I think this is often an error for four main reasons. 1. Scalability 2. Capital counterfactuals 3. Standards 4. Learning potential 5. Earning to give potential These arguments are most applicable to starting high-growth organisations, such as startups.[1] Scalability There is a lot of capital available for startups, and established mechanisms exist to continue raising funds if the ROI appears high. It seems extremely difficult to operate a nonprofit with a budget of more than $30M per year (e.g., with approximately 150 people), but this is not particularly unusual for for-profit organisations. Capital Counterfactuals I generally believe that value-aligned funders are spending their money reasonably well, while for-profit investors are spending theirs extremely poorly (on altruistic grounds). If you can redirect that funding towards high-altruism value work, you could potentially create a much larger delta between your use of funding and the counterfactual of someone else receiving those funds. You also won’t be reliant on constantly convincing donors to give you money, once you’re generating revenue. Standards Nonprofits have significantly weaker feedback mechanisms compared to for-profits. They are often difficult to evaluate and lack a natural kill function. Few people are going to complain that you provided bad service when it didn’t cost them anything. Most nonprofits are not very ambitious, despite having large moral ambitions. It’s challenging to find talented people willing to accept a substantial pay cut to work with you. For-profits are considerably more likely to create something that people actually want. Learning Potential Most people should be trying to put themselves in a better position to do useful work later on. People often report learning a great deal from working at high-growth companies, building interesting connection
 ·  · 1m read
 · 
I wanted to share a small but important challenge I've encountered as a student engaging with Effective Altruism from a lower-income country (Nigeria), and invite thoughts or suggestions from the community. Recently, I tried to make a one-time donation to one of the EA-aligned charities listed on the Giving What We Can platform. However, I discovered that I could not donate an amount less than $5. While this might seem like a minor limit for many, for someone like me — a student without a steady income or job, $5 is a significant amount. To provide some context: According to Numbeo, the average monthly income of a Nigerian worker is around $130–$150, and students often rely on even less — sometimes just $20–$50 per month for all expenses. For many students here, having $5 "lying around" isn't common at all; it could represent a week's worth of meals or transportation. I personally want to make small, one-time donations whenever I can, rather than commit to a recurring pledge like the 10% Giving What We Can pledge, which isn't feasible for me right now. I also want to encourage members of my local EA group, who are in similar financial situations, to practice giving through small but meaningful donations. In light of this, I would like to: * Recommend that Giving What We Can (and similar platforms) consider allowing smaller minimum donation amounts to make giving more accessible to students and people in lower-income countries. * Suggest that more organizations be added to the platform, to give donors a wider range of causes they can support with their small contributions. Uncertainties: * Are there alternative platforms or methods that allow very small one-time donations to EA-aligned charities? * Is there a reason behind the $5 minimum that I'm unaware of, and could it be adjusted to be more inclusive? I strongly believe that cultivating a habit of giving, even with small amounts, helps build a long-term culture of altruism — and it would