"Starting a company is like chewing glass. Eventually, you start to like the taste of your own blood."

Building a new organization is extremely hard. It's hard when you've done it before, even several times. It's even harder the first time.

Some new organizations are very similar to existing organizations. The founders of the new org can go look at all the previous closeby examples, learn from them, copy their playbook and avoid their mistakes.  If your org is shaped like a Y-combinator company, you can spend dozens of hours absorbing high-quality, expert-crafted content which has been tested and tweaked and improved over hundreds of companies and more than a decade. You can do a 15 minute interview to go work next to a bunch of the best people who are also building your type of org, and learn by looking over their shoulder and troubleshooting together. You get to talk to a bunch of people who have actually succeeded  building an org-like-yours.  

How likely is org building success, in this premier reference class, rich with prior examples to learn from, with a tried and true playbook, a tight community of founder peers, the advice of many people who have tried to do your kind of thing and won? 

5%. 
https://pitchbook.com/news/articles/y-combinator-accelerator-success-rate-unicorns

An AI safety lab is not the same as a Y-combinator company.  

It is. WAY. FUCKING. HARDER.

Y-combinator crowd has a special category for orgs which are trying build something  that requires > ~any minor research breakthrough: HARD tech. 

Yet the vast majority of these Hard Tech companies are actually building on top of an academic field which basically has the science figured out. Ginkgo Bioworks did not need to figure out the principles of molecular biology, nor the tools and protocols of genetic engineering. They took the a decades old, well-developed paradigm, and worked within it to incrementally build something new. 

How does this look for AI safety?

And how about timing. Y-combinator reference class companies take a long time to build. Growing headcount slowly, running lean: absolutely essential if you are stretching out your last funding round over 7 years to iterate your way from a 24 hour livestream tv show of one guy's life to a game streaming company. 

Remind me again, what are your timelines?

I could keep going on this for a while. People? Fewer. Funding? Monolithic. Advice from the winners? HA.

Apply these updates to our starting reference class success rate of

ONE. IN. TWENTY.

Now count the AI safety labs. 

Multiply by ~3.  

That is the roughly the number of people who are not the subject of this post. 

For all the rest of us, consider several criticisms and suggestions, which were not feasible to run by the subjects of this post before publication
0. Nobody knows what they are fucking doing when founding and running an AI safety lab and everyone who says they do is lying to you.
1. Nobody has ever seen an organization which has succeeded at this goal.
2. Nobody has ever met the founder of such an organization, nor noted down their qualifications.
3. If the quote at the top of this post doesn't evoke a visceral sense memory for you, consider whether you have an accurate mental picture of what it looks like and feels like to be succeeding at this kind of thing from the inside. Make sure you imagine having fully internalized that FAILURE IS YOUR FAULT and no one else's, and are defining success correctly. (I believe it should be "everyone doesn't die" rather than "be highly respected for your organization's contributions" or "avoid horribly embarrassing mistakes".) 
4.  If that last bit feels awful and stress inducing, I expect that is because it is. Even for and especially for the handfulls of people who are not the subjects of this post. So much so that I'm guessing that whatever it is that allows people to say "yes" to that responsibility is the ~only real qualification to adding a one to the number of AI safety labs we counted earlier. 
5. You have permission. You do not need approval. You are allowed to do stupid things, have no relevant experience, be an embarrassing mess, and even ~*~fail to respond criticism~*~ 
6. Some of us know what it looks like to be chewing glass, and we have tasted our own blood. We know the difference between the continuous desperate dumpster fires and the real mistakes. We will be silently cheering you through the former and grieving with you on the latter. Sometimes we will write you a snarky post under a pseudonym when we really should be sleeping. 

522 companies went through Y-combinator over the last year. Imagine that.

Thank you for reading this loveletter to the demeaning occupation of desperately trying. It's addressed to you, if you'd like.

Comments12


Sorted by Click to highlight new comments since:

I am confused about what your claims are, exactly (or what you’re trying to say). 

One interpretation, which makes sense to me, is the following

“Starting an AI safety lab is really hard and we should have a lot of appreciation for people who are doing it. We should also cut them some more slack when they make mistakes because it is really hard and some of the things they are trying to do have never been done before.” (This isn’t a direct quote)

I really like and appreciate this point. Speaking for me personally, I too often fall into the trap of criticising someone for doing something not perfectly and not 1. Appreciating that they have tried at all and that it was potentially really hard, and 2. Criticising all the people who didn’t do anything and chose the safe route. There is a good post about this: Invisible impact loss (and why we can be too error-averse).

In addition, I think it could be a valid point to say that we should be more understanding if e.g. the research agendas of AIS labs are/were off in the past as this is a problem that no one really knows how to solve and that is just very hard. I don’t really feel qualified to comment on that.  

 

Your post could also be claiming something else:

“We should not criticise / should have a very high bar for criticizing AI safety labs and their founders (especially not if you yourself have not started an AIS lab). They are doing something that no one else has done before, and when they make mistakes, that is way understandable because they don’t have anyone to learn from.” (This isn’t a direct quote)

For instance, you seem to claim that the reference class of people who can advise people working on AI safety is some group whose size is the number of AI safety labs multiplied by 3. (This is what I understand your point to be if I look at the passage that starts with “Some new organizations are very similar to existing organizations. The founders of the new org can go look at all the previous closeby examples, learn from them, copy their playbook and avoid their mistakes.” and ends in “That is the roughly the number of people who are not the subject of this post.”)

If this is what you want to say, I think the message is wrong in important ways. In brief: 

  1. I agree that when people work on hard and important things, we should appreciate them, but I disagree that we should avoid criticism of work like this. Criticism is important precisely when the work matters. Criticism is important when the problems are strange and people are probably making mistakes. 
  2. The strong version of “they’re doing something that no one else has done before … they don’t have anyone to learn from” seems to take a very narrow reference class for a broad set of ways to learn from people. You can learn from people who aren’t doing the exact thing that you’re doing.

 

1. A claim like: “We should not criticise / should have a very high bar for criticizing AI safety labs / their founders (especially not if you yourself have not started an AIS lab).”

As stated above, I think it is important to appreciate people for trying at all, and it’s useful to notice that work not getting done is a loss. That being said, criticism is still useful. People are making mistakes that others can notice. Some organizations are less promising than others, and it’s useful to make those distinctions so that we know which to work in or donate to. 

In a healthy EA/LT/AIS community, I want people to criticise other organisations, even if what they are doing is very hard and has never been done before. E.g. you could make the case that what OP, GiveWell, and ACE are doing has never been done before (although it is slightly unclear to me what exactly “doing something that has never been done before” means), and I don’t think anyone would say that those organisations should be beyond criticism. 

This ties nicely into the second point I think is wrong: 

2. A claim like: “they’re doing something that no one else has done before … they don’t have anyone to learn from”

A quote from your post:

The founders of the new org can go look at all the previous closeby examples, learn from them, copy their playbook and avoid their mistakes.  If your org is shaped like a Y-combinator company, you can spend dozens of hours absorbing high-quality, expert-crafted content which has been tested and tweaked and improved over hundreds of companies and more than a decade. You can do a 15 minute interview to go work next to a bunch of the best people who are also building your type of org, and learn by looking over their shoulder and troubleshooting together. You get to talk to a bunch of people who have actually succeeded  building an org-like-yours.  … How does this look for AI safety? … Apply these updates to our starting reference class success rate of ONE. IN. TWENTY. Now count the AI safety labs. Multiply by ~3.  


A point I think you’re making:  

“They are doing something that no one else has done before [build a successful AI safety lab], and therefore, if they make mistakes, that is way understandable because they don’t have anyone to learn from.”

It is true that the closer your organisation is to an already existing org/cluster of orgs, the more you will be able to copy. But just because you’re working on something new that no one has worked on (or your work is different in other important aspects), it doesn’t mean that you cannot learn from other organisations, their successes and failures. For things like having a healthy work culturetalent retention, and good governance structures, there are examples in the world that even AIS labs can learn from. 

I don’t understand the research side of things well enough to comment on whether/how much AIS labs could learn from e.g. academic research or for-profit research labs working on problems different from AIS. 


 

Hey, sorry I'm in a rush and couldn't read your whole comment. I wanted to jump in anyway to clarify that you're totally right to be confused about what my claims are. I wasn't trying to make claims, really, I was channelling an emotion I had late at night into a post that I felt compelled to hit submit on. Hence: "loveletter to the demeaning occupation of desperately trying"

I really value the norms of discourse here, their carefulness, modestness, and earnestness. From the skim of your comment I'm guessing after a closer read I'd think it was a great example of that, which I appreciate.

I don't expect I'll manage to rewrite this post in the way which makes everything I believe clear (and I'm not sure that would be very valuable for others if I did) 

FWIW, I most read the core message of this post as: "you should start an AI safety lab. What are you waiting for? ;)".

The post felt to me like debunking reasons people might feel they aren't qualified to start an AI safety lab.

I don't think this was the primary intention though. I feel like I came away with that impression because of the Twitter contexts in which I saw this post referenced.

Seems like academic research groups would be a better reference class than YC companies for most alignment labs.

If they're trying to build an org that scales a lot, and is funded by selling products, YC companies is a good reference class, but if they're an org of researchers working somewhat independently or collaborating on hard technical problems, funded by grants, that sounds much more similar to an academic research group.

Unsure how to define success for an academic research group, any ideas? They seem to more often be exploratory and less goal-oriented.

As someone who did recently set up an AI safety lab, success rates have certainly been on my mind. It's certainly challenging, but I think the reference class we're in might be better than it seems at first.

I think a big part of what makes succeeding as a for-profit tech start-up challenging is that so many other talented individuals are chasing the same, good ideas. For every Amazon there are 1000s of failed e-commerce start-ups. Clearly, Amazon did something much better than the competition. But what if Amazon didn't exist? What if there was a company that was a little more expensive, and had longer shipping times? I'd wager that company would still be highly successful.

Far fewer people are working on AI safety. That's a bad thing, but it does at least mean that there's more low-hanging fruit to be tapped. I agree with [Adam Binks](https://forum.effectivealtruism.org/posts/PJLx7CwB4mtaDgmFc/critiques-of-non-existent-ai-safety-labs-yours?commentId=eLarcd8no5iKqFaNQ) that academic labs might be a better reference class. But even there, AI safety has had far less attention paid to it than e.g. developing treatments for cancer or unifying quantum mechanics and general relativity. 

So overall it's far from clear to me that it's harder to make progress on AI safety than solve outstanding challenge problems in academia, or in trying to make a $1 bn+ company.

Thanks for writing this. It felt a bit like an AI safety version of Roosevelt's Man in the arena

It is not the critic who counts; not the man who points out how the strong man stumbles, or where the doer of deeds could have done them better. The credit belongs to the man who is actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly; who errs, who comes short again and again, because there is no effort without error and shortcoming; but who does actually strive to do the deeds; who knows great enthusiasms, the great devotions; who spends himself in a worthy cause; who at the best knows in the end the triumph of high achievement, and who at the worst, if he fails, at least fails while daring greatly, so that his place shall never be with those cold and timid souls who neither know victory nor defeat.

I'm honestly not sure whether this is an argument in support of AI labs or against?

it's roughly in support of AI labs, particularly scrappier ones.

~65% of charity entrepreneurship charities are at least moderately successful, with half of those being very successful. They're probably a closer reference class, being donor-funded organisations run by EAs for impact.

One way in which AI safety labs are different than the reference class of Y-combinator startups is in their impact. Conditioned on the median Forum user's assessment of X-risk from AI, the leader of a major AI safety lab probably has more impact that the median U.S. senator, Fortune 500 CEO, or chief executive of smaller regional or even national governments, etc. Those jobs are hard in their own ways, but we expect and even encourage an extremely high amount of criticism. 

I am not suggesting that is the proper reference class for leaders of AI labs that have raised at least $10MM . . . and I don't think it is. But I think the proper scope of criticism is significantly higher than for (e.g.) the median CEO whose company went through Y Combinator.[1] If a startup CEO messes up and their company explodes, the pain is generally going to be concentrated in the company's investors, lenders, and employees . . . a small number of people, each of whom who consented to bearing that risk to a significant extent. If I'm not one of those people, my standing to complain about the startup CEO's mistakes is significantly constrained.

In contrast, if an AI safety lab goes off the rails and becomes net-negative, that affects us all (and futute generations). Even if the lab is merely ineffective, its existence would have drained fairly scarce resources (potential alignment researchers and EA funding) from others in the field. 

I definitively agree that people need to be sensitive to how hard running an AI safety lab is, but also want to affirm that the idea of criticism is legitimate.

 

  1. ^

    To be clear, I don't think Anneal's post suggests that this is the reference class for deciding how much criticism of AI lab leaders is warranted. However, since I didn't see a clear reference class, I thought it was worthwhile to discuss this one.

Fail early, fail often. Many little dooms are good. One big doom is not so good. 

Curated and popular this week
Paul Present
 ·  · 28m read
 · 
Note: I am not a malaria expert. This is my best-faith attempt at answering a question that was bothering me, but this field is a large and complex field, and I’ve almost certainly misunderstood something somewhere along the way. Summary While the world made incredible progress in reducing malaria cases from 2000 to 2015, the past 10 years have seen malaria cases stop declining and start rising. I investigated potential reasons behind this increase through reading the existing literature and looking at publicly available data, and I identified three key factors explaining the rise: 1. Population Growth: Africa's population has increased by approximately 75% since 2000. This alone explains most of the increase in absolute case numbers, while cases per capita have remained relatively flat since 2015. 2. Stagnant Funding: After rapid growth starting in 2000, funding for malaria prevention plateaued around 2010. 3. Insecticide Resistance: Mosquitoes have become increasingly resistant to the insecticides used in bednets over the past 20 years. This has made older models of bednets less effective, although they still have some effect. Newer models of bednets developed in response to insecticide resistance are more effective but still not widely deployed.  I very crudely estimate that without any of these factors, there would be 55% fewer malaria cases in the world than what we see today. I think all three of these factors are roughly equally important in explaining the difference.  Alternative explanations like removal of PFAS, climate change, or invasive mosquito species don't appear to be major contributors.  Overall this investigation made me more convinced that bednets are an effective global health intervention.  Introduction In 2015, malaria rates were down, and EAs were celebrating. Giving What We Can posted this incredible gif showing the decrease in malaria cases across Africa since 2000: Giving What We Can said that > The reduction in malaria has be
Rory Fenton
 ·  · 6m read
 · 
Cross-posted from my blog. Contrary to my carefully crafted brand as a weak nerd, I go to a local CrossFit gym a few times a week. Every year, the gym raises funds for a scholarship for teens from lower-income families to attend their summer camp program. I don’t know how many Crossfit-interested low-income teens there are in my small town, but I’ll guess there are perhaps 2 of them who would benefit from the scholarship. After all, CrossFit is pretty niche, and the town is small. Helping youngsters get swole in the Pacific Northwest is not exactly as cost-effective as preventing malaria in Malawi. But I notice I feel drawn to supporting the scholarship anyway. Every time it pops in my head I think, “My money could fully solve this problem”. The camp only costs a few hundred dollars per kid and if there are just 2 kids who need support, I could give $500 and there would no longer be teenagers in my town who want to go to a CrossFit summer camp but can’t. Thanks to me, the hero, this problem would be entirely solved. 100%. That is not how most nonprofit work feels to me. You are only ever making small dents in important problems I want to work on big problems. Global poverty. Malaria. Everyone not suddenly dying. But if I’m honest, what I really want is to solve those problems. Me, personally, solve them. This is a continued source of frustration and sadness because I absolutely cannot solve those problems. Consider what else my $500 CrossFit scholarship might do: * I want to save lives, and USAID suddenly stops giving $7 billion a year to PEPFAR. So I give $500 to the Rapid Response Fund. My donation solves 0.000001% of the problem and I feel like I have failed. * I want to solve climate change, and getting to net zero will require stopping or removing emissions of 1,500 billion tons of carbon dioxide. I give $500 to a policy nonprofit that reduces emissions, in expectation, by 50 tons. My donation solves 0.000000003% of the problem and I feel like I have f
LewisBollard
 ·  · 8m read
 · 
> How the dismal science can help us end the dismal treatment of farm animals By Martin Gould ---------------------------------------- Note: This post was crossposted from the Open Philanthropy Farm Animal Welfare Research Newsletter by the Forum team, with the author's permission. The author may not see or respond to comments on this post. ---------------------------------------- This year we’ll be sharing a few notes from my colleagues on their areas of expertise. The first is from Martin. I’ll be back next month. - Lewis In 2024, Denmark announced plans to introduce the world’s first carbon tax on cow, sheep, and pig farming. Climate advocates celebrated, but animal advocates should be much more cautious. When Denmark’s Aarhus municipality tested a similar tax in 2022, beef purchases dropped by 40% while demand for chicken and pork increased. Beef is the most emissions-intensive meat, so carbon taxes hit it hardest — and Denmark’s policies don’t even cover chicken or fish. When the price of beef rises, consumers mostly shift to other meats like chicken. And replacing beef with chicken means more animals suffer in worse conditions — about 190 chickens are needed to match the meat from one cow, and chickens are raised in much worse conditions. It may be possible to design carbon taxes which avoid this outcome; a recent paper argues that a broad carbon tax would reduce all meat production (although it omits impacts on egg or dairy production). But with cows ten times more emissions-intensive than chicken per kilogram of meat, other governments may follow Denmark’s lead — focusing taxes on the highest emitters while ignoring the welfare implications. Beef is easily the most emissions-intensive meat, but also requires the fewest animals for a given amount. The graph shows climate emissions per tonne of meat on the right-hand side, and the number of animals needed to produce a kilogram of meat on the left. The fish “lives lost” number varies significantly by