crossposted on LessWrong
I'm interested in questions of the form, "I have a bit of metadata/structure to the question, but I know very little about the content of the question (or alternatively, I'm too worried about biases/hacks to how I think about the problem or what pieces of information to pay attention to). In those situations, what prior should I start with?"
I'm not sure if there is a more technical term than "low-information prior."
Some examples of what I found useful recently:
1. Laplace's Rule of Succession, for when the underlying mechanism is unknown.
2. Percentage of binary questions that resolves as "yes" on Metaculus. It turns out that of all binary (Yes-No) questions asked on the prediction platform Metaculus, ~29% of them resolved yes. This means that even if you know nothing about the content of a Metaculus question, a reasonable starting point for answering a randomly selected binary Metaculus question is 29%.
In both cases, obviously there are reasons to override the prior in both practice and theory (for example, you can arbitrarily add a "not" to all questions on Metaculus such that your prior is now 71%). However (I claim), having a decent prior is nonetheless useful in practice, even if it's theoretically unprincipled.
I'd be interested in seeing something like 5-10 examples of low-information priors as useful as the rule of succession or the Metaculus binary prior.
I don't think Greaves' example suffers the same problem actually - if we truly don't know anything about what the possible colours are (just that each book has one colour), then there's no reason to prefer {red, yellow, blue, other} over {red, yellow, blue, green, other}.
In the case of truly having no information, I think it makes sense to use Jeffreys prior in the box factory case because that's invariant to reparametrisation, so it doesn't matter whether the problem is framed in terms of length, area, volume, or some other parameterisation. I'm not sure what that actually looks like in this case though