crossposted on LessWrong
I'm interested in questions of the form, "I have a bit of metadata/structure to the question, but I know very little about the content of the question (or alternatively, I'm too worried about biases/hacks to how I think about the problem or what pieces of information to pay attention to). In those situations, what prior should I start with?"
I'm not sure if there is a more technical term than "low-information prior."
Some examples of what I found useful recently:
1. Laplace's Rule of Succession, for when the underlying mechanism is unknown.
2. Percentage of binary questions that resolves as "yes" on Metaculus. It turns out that of all binary (Yes-No) questions asked on the prediction platform Metaculus, ~29% of them resolved yes. This means that even if you know nothing about the content of a Metaculus question, a reasonable starting point for answering a randomly selected binary Metaculus question is 29%.
In both cases, obviously there are reasons to override the prior in both practice and theory (for example, you can arbitrarily add a "not" to all questions on Metaculus such that your prior is now 71%). However (I claim), having a decent prior is nonetheless useful in practice, even if it's theoretically unprincipled.
I'd be interested in seeing something like 5-10 examples of low-information priors as useful as the rule of succession or the Metaculus binary prior.
I think I disagree with your claim that I'm implicitly assuming independence of the ball colourings.
I start by looking for the maximum entropy distribution within all possible probability distributions over the 2^100 possible colourings. Most of these probability distributions do not have the property that balls are coloured independently. For example, if the distribution was a 50% probability of all balls being red, and 50% probability of all balls being blue, then learning the colour of a single ball would immediately tell you the colour of all of the others.
But it just so happens that for the probability distribution which maximises the entropy, the ball colourings do turn out to be independent. If you adopt the maximum entropy distribution as your prior, then learning the colour of one tells you nothing about the others. This is an output of the calculation, rather than an assumption.
I think I agree with your last paragraph, although there are some real problems here that I don't know how to solve. Why should we expect any of our existing knowledge to be a good guide to what we will observe in future? It has been a good guide in the past, but so what? 99 red balls apparently doesn't tell us that the 100th will likely be red, for certain seemingly reasonable choices of prior.
I guess what I was trying to say in my first comment is that the maximum entropy principle is not a solution to the problem of induction, or even an approximate solution. Ultimately, I don't think anyone knows how to choose priors in a properly principled way. But I'd very much like to be corrected on this.