crossposted on LessWrong
I'm interested in questions of the form, "I have a bit of metadata/structure to the question, but I know very little about the content of the question (or alternatively, I'm too worried about biases/hacks to how I think about the problem or what pieces of information to pay attention to). In those situations, what prior should I start with?"
I'm not sure if there is a more technical term than "low-information prior."
Some examples of what I found useful recently:
1. Laplace's Rule of Succession, for when the underlying mechanism is unknown.
2. Percentage of binary questions that resolves as "yes" on Metaculus. It turns out that of all binary (Yes-No) questions asked on the prediction platform Metaculus, ~29% of them resolved yes. This means that even if you know nothing about the content of a Metaculus question, a reasonable starting point for answering a randomly selected binary Metaculus question is 29%.
In both cases, obviously there are reasons to override the prior in both practice and theory (for example, you can arbitrarily add a "not" to all questions on Metaculus such that your prior is now 71%). However (I claim), having a decent prior is nonetheless useful in practice, even if it's theoretically unprincipled.
I'd be interested in seeing something like 5-10 examples of low-information priors as useful as the rule of succession or the Metaculus binary prior.
I think I disagree that that is the right maximum entropy prior in my ball example.
You know that you are drawing balls without replacement from a bag containing 100 balls, which can only be coloured blue or red. The maximum entropy prior given this information is that every one of the 2^100 possible colourings {Ball 1, Ball 2, Ball 3, ...} -> {Red, Blue} is equally likely (i.e. from the start the probability that all balls are red is 1 over 2^100).
I think the model you describe is only the correct approach if you make an additional assumption that all balls were coloured using an identical procedure, and were assigned to red or blue with some unknown, but constant, probability p. But that is an additional assumption. The assumption that the unknown p is the same for each ball is actually a very strong assumption.
If you want to adopt the maximum entropy prior consistent with the information I gave in the set-up of the problem, you'd adopt a prior where each of the 2^100 possible colourings are equally likely.
I think this is the right way to think about it anyway.
The re-paremetrisation example is very nice though, I wasn't aware of that before.