This is a linkpost for https://confusopoly.com/2019/04/03/the-optimizers-curse-wrong-way-reductions/.
Summary
I spent about two and a half years as a research analyst at GiveWell. For most of my time there, I was the point person on GiveWell’s main cost-effectiveness analyses. I’ve come to believe there are serious, underappreciated issues with the methods the effective altruism (EA) community at large uses to prioritize causes and programs. While effective altruists approach prioritization in a number of different ways, most approaches involve (a) roughly estimating the possible impacts funding opportunities could have and (b) assessing the probability that possible impacts will be realized if an opportunity is funded.
I discuss the phenomenon of the optimizer’s curse: when assessments of activities’ impacts are uncertain, engaging in the activities that look most promising will tend to have a smaller impact than anticipated. I argue that the optimizer’s curse should be extremely concerning when prioritizing among funding opportunities that involve substantial, poorly understood uncertainty. I further argue that proposed Bayesian approaches to avoiding the optimizer’s curse are often unrealistic. I maintain that it is a mistake to try and understand all uncertainty in terms of precise probability estimates.
I go into a lot more detail in the full post.
Thanks for raising this.
To be clear, I'm still a huge fan of GiveWell. GiveWell only shows up in so many examples in my post because I'm so familiar with the organization.
I mostly agree with the points Holden makes in his cluster thinking post (and his other related posts). Despite that, I still have serious reservations about some of the decision-making strategies used both at GW and in the EA community at large. It could be that Holden and I mostly agree, but other people take different positions. It could be that Holden and I agree about a lot of things at a high-level but then have significantly different perspectives about how those things we agree on at a high-level should actually manifest themselves in concrete decision making.
For what it's worth, I do feel like the page you linked to from GiveWell's website may downplay the role cost-effectiveness plays in its final recommendations (though GiveWell may have a good rebuttal).
In a response to Taymon's comment, I left a specific example of something I'd like to see change. In general, I'd like people to be more reluctant to brute-force push their way through uncertainty by putting numbers on things. I don't think people need to stop doing that entirely, but I think it should be done while keeping in mind something like: "I'm using lots of probabilities in a domain where I have no idea if I'm well-calibrated...I need to be extra skeptical of whatever conclusions I reach."