This is a linkpost for https://confusopoly.com/2019/04/03/the-optimizers-curse-wrong-way-reductions/.
Summary
I spent about two and a half years as a research analyst at GiveWell. For most of my time there, I was the point person on GiveWell’s main cost-effectiveness analyses. I’ve come to believe there are serious, underappreciated issues with the methods the effective altruism (EA) community at large uses to prioritize causes and programs. While effective altruists approach prioritization in a number of different ways, most approaches involve (a) roughly estimating the possible impacts funding opportunities could have and (b) assessing the probability that possible impacts will be realized if an opportunity is funded.
I discuss the phenomenon of the optimizer’s curse: when assessments of activities’ impacts are uncertain, engaging in the activities that look most promising will tend to have a smaller impact than anticipated. I argue that the optimizer’s curse should be extremely concerning when prioritizing among funding opportunities that involve substantial, poorly understood uncertainty. I further argue that proposed Bayesian approaches to avoiding the optimizer’s curse are often unrealistic. I maintain that it is a mistake to try and understand all uncertainty in terms of precise probability estimates.
I go into a lot more detail in the full post.
tl;dr: even using priors, with more options and hazier probabilities, you tend to increase the number of options which are too sensitive to supporting information (or just optimistically biased due to your priors), and these options look disproportionately good. This is still an optimizer’s curse in practice.
In practice, your models and priors will almost always be wrong, because you lack information; there's some truth of the matter of which you aren't aware. It's unrealistic to expect us to have good guesses for the priors in all cases, especially with little information or precedent as in hazy probabilities, a major point of the OP.
You'd hope that more information would tend to allow you to make better predictions and bring you closer to the truth, but when optimizing, even with correctly specified likelihoods and after updating over priors as you said should be done, the predictions for the selected coin can be more biased in expectation with more information (results of coin flips). On the other hand, the predictions for any fixed coin will not be any more biased in expectation over the new information, and if the prior's EV hadn't matched the true mean, the predictions would tend to be less biased.
More information (flips) per option (coin) would reduce the bias of the selection on average, but, as I showed, more options (coins) would increase it, too, because you get more chances to be unusually lucky.
The intent here again is that you don't know the coins are fair.
Fair enough.
How would you do this in practice? Specifically, how would you get an idea of the magnitude for the correction you should make?
Maybe you could test your own (or your group's) prediction calibration and bias, but it's not clear how exactly you should incorporate this information, and it's likely these tests won't be very representative when you're considering the kinds of problems with hazy probabilities mentioned in the OP.