This is a linkpost for https://confusopoly.com/2019/04/03/the-optimizers-curse-wrong-way-reductions/.
Summary
I spent about two and a half years as a research analyst at GiveWell. For most of my time there, I was the point person on GiveWell’s main cost-effectiveness analyses. I’ve come to believe there are serious, underappreciated issues with the methods the effective altruism (EA) community at large uses to prioritize causes and programs. While effective altruists approach prioritization in a number of different ways, most approaches involve (a) roughly estimating the possible impacts funding opportunities could have and (b) assessing the probability that possible impacts will be realized if an opportunity is funded.
I discuss the phenomenon of the optimizer’s curse: when assessments of activities’ impacts are uncertain, engaging in the activities that look most promising will tend to have a smaller impact than anticipated. I argue that the optimizer’s curse should be extremely concerning when prioritizing among funding opportunities that involve substantial, poorly understood uncertainty. I further argue that proposed Bayesian approaches to avoiding the optimizer’s curse are often unrealistic. I maintain that it is a mistake to try and understand all uncertainty in terms of precise probability estimates.
I go into a lot more detail in the full post.
Intuitively, it strikes me as appropriate for some realistic situations. For example, you might try to estimate the performance of people based on quite different kinds or magnitudes of inputs; e.g. one applicant might have a long relevant track record, for another one you might just have a brief work test. Or you might compare the impact of interventions that are backed by very different kinds of evidence - say, a RCT vs. a speculative, qualitative argument.
Maybe there is something I'm missing here about why the assumption is odd, or perhaps even why the examples I gave don't have the property required in the paper? (The latter would certainly be plausible as I read the paper a while ago, and even back then not very closely.)