Linch's Shortform

by Linch19th Sep 201985 comments
80 comments, sorted by Highlighting new comments since Today at 4:22 PM
New Comment
Some comments are truncated due to high volume. (⌘F to expand all)Change truncation settings

Here are some things I've learned from spending the better part of the last 6 months either forecasting or thinking about forecasting, with an eye towards beliefs that I expect to be fairly generalizable to other endeavors.

Note that I assume that anybody reading this already has familiarity with Phillip Tetlock's work on (super)forecasting, particularly Tetlock's 10 commandments for aspiring superforecasters.

1. Forming (good) outside views is often hard but not impossible. I think there is a common belief/framing in EA and rationalist circles that coming up with outside views is easy, and the real difficulty is a) originality in inside views, and also b) a debate of how much to trust outside views vs inside views.

I think this is directionally true (original thought is harder than synthesizing existing views) but it hides a lot of the details. It's often quite difficult to come up with and balance good outside views that are applicable to a situation. See Manheim and Muelhauser for some discussions of this.

2. For novel out-of-distribution situations, "normal" people often trust centralized data/ontologies more than is warranted. See here for a discu... (read more)

Consider making this a top-level post! That way, I can give it the "Forecasting" tag so that people will find it more often later, which would make me happy, because I like this post.

6Linch7moThanks! Posted [] .
2Linch8moThanks for the encouragement and suggestion! Do you have recommendations for a really good title?
2Aaron Gertler8moTitles aren't my forte. I'd keep it simple. "Lessons learned from six months of forecasting" or "What I learned after X hours of forecasting" (where "X" is an estimate of how much time you spent over six months).
1NunoSempere7moI second this.

cross-posted from Facebook.

Sometimes I hear people who caution humility say something like "this question has stumped the best philosophers for centuries/millennia. How could you possibly hope to make any progress on it?". While I concur that humility is frequently warranted and that in many specific cases that injunction is reasonable [1], I think the framing is broadly wrong.

In particular, using geologic time rather than anthropological time hides the fact that there probably weren't that many people actively thinking about these issues, especially carefully, in a sustained way, and making sure to build on the work of the past. For background, 7% of all humans who have ever lived are alive today, and living people compose 15% of total human experience [2] so far!!!

It will not surprise me if there are about as many living philosophers today as there were dead philosophers in all of written history.

For some specific questions that particularly interest me (eg. population ethics, moral uncertainty), the total research work done on these questions is generously less than five philosopher-lifetimes. Even for classical age-old philosophical dilemmas/"grand projects... (read more)

4MathiasKirkBonde2yIf a problem is very famous and unsolved, doesn't those who tried solving it include many of the much more competent philosophers alive today? The fact that the problem has not been solved by any of them either would suggest to me it's a hard problem.
2saulius2yHonest question: are there examples of philosophical problems that were solved in the last 50 years? And I mean solved by doing philosophy not by doing mostly unrelated experiments (like this one []). I imagine that even if some philosophers felt they answered a question, other would dispute it. More importantly, the solution would likely be difficult to understand and hence it would be of limited value. I'm not sure I'm right here.
2saulius2yAfter a bit more googling I found this [] which maybe shows that there have been philosophical problems solved recently. I haven't read about that specific problem though. It's difficult to imagine a short paper solving the hard problem of consciousnesses though.
9Linch7moI enjoyed this list [] of philosophy's successes, but none of them happened in the last 50 years.
9Jason Schukraft2yYou might be interested in the following posts on the subject from Daily Nous [], an excellent philosophy blog: "Why Progress Is Slower In Philosophy Than In Science" [] "How Philosophy Makes Progress (guest post by Daniel Stoljar)" [] "How Philosophy Makes Progress (guest post by Agnes Callard)" [] "Whether Philosophical Questions Can Be Answered" [] "Convergence as Progress in Philosophy" []
2Linch7moI'll be interested in having someone with a history of philosophy background weigh in on the Gettier question specifically. I thought Gettier problems were really interesting when I first heard about them, but I've also heard that "knowledge as justified true belief" wasn't actually all that dominant a position before Gettier came along.

cross-posted from Facebook.

Catalyst (biosecurity conference funded by the Long-Term Future Fund) was incredibly educational and fun.

Random scattered takeaways:

1. I knew going in that everybody there will be much more knowledgeable about bio than I was. I was right. (Maybe more than half the people there had PhDs?)

2. Nonetheless, I felt like most conversations were very approachable and informative for me, from Chris Bakerlee explaining the very basics of genetics to me, to asking Anders Sandberg about some research he did that was relevant to my interests, to Tara Kirk Sell detailing recent advances in technological solutions in biosecurity, to random workshops where novel ideas were proposed...

3. There's a strong sense of energy and excitement from everybody at the conference, much more than other conferences I've been in (including EA Global).

4. From casual conversations in EA-land, I get the general sense that work in biosecurity was fraught with landmines and information hazards, so it was oddly refreshing to hear so many people talk openly about exciting new possibilities to de-risk biological threats and promote a healthier future, while still being fully cognizant ... (read more)

Publication bias alert: Not everybody liked the conference as much as I did. Someone I know and respect thought some of the talks weren't very good (I agreed with them about the specific examples, but didn't think it mattered because really good ideas/conversations/networking at an event + gestalt feel is much more important for whether an event is worthwhile to me than a few duds).

That said, on a meta level, you might expect that people who really liked (or hated, I suppose) a conference/event/book to write detailed notes about it than people who were lukewarm about it.

6Habryka1yI am glad to hear that! I sadly didn't end up having the time to go, but I've been excited about the project for a while.
3mike_mclaren1yThanks for your report! I was interested but couldn't manage the cross country trip and definitely curious to hear what it was like.
2tessa1yI'd really appreciate ideas for how to try to confer some of what it was like to people who couldn't make it. We recorded some of the talks and intend to edit + upload them, we're writing a "how to organize a conference" postmortem / report, and one attendee is planning to write a magazine article, but I'm not sure what else would be useful. Would another post like this be helpful?
2mike_mclaren1yThat all sounds useful and interesting to me! I think multiple posts following events on the personal experiences from multiple people (organizers and attendees) can be useful simply for the diversity of their perspectives. Regarding Catalyst in particular I'm curious about the variety of backgrounds of the attendees and how their backgrounds shaped their goals and experiences during the meeting.

Over a year ago, someone asked the EA community whether it’s valuable to become world-class at an unspecified non-EA niche or field. Our Forum’s own Aaron Gertler responded in a post, saying basically that there’s a bunch of intangible advantages for our community to have many world-class people, even if it’s in fields/niches that are extremely unlikely to be directly EA-relevant.

Since then, Aaron became (entirely in his spare time, while working 1.5 jobs) a world-class Magic the Gathering player, recently winning the DreamHack MtGA tournament and getting $30,000 in prize monies, half of which he donated to Givewell.

I didn’t find his arguments overwhelmingly persuasive at the time, and I still don’t. But it’s exciting to see other EAs come up with unusual theories of change, actually executing on them, and then being wildly successful.

Something that came up with a discussion with a coworker recently is that often internet writers want some (thoughtful) comments, but not too many, since too many comments can be overwhelming. Or at the very least, the marginal value of additional comments is usually lower for authors when there are more comments. 

However, the incentives for commentators is very different: by default people want to comment on the most exciting/cool/wrong thing, so internet posts can easily by default either attract many comments or none. (I think) very little self-policing is done, if anything a post with many comments make it more attractive to generate secondary or tertiary comments, rather than less.

Meanwhile, internet writers who do great work often do not get the desired feedback. As evidence:  For ~ a month, I was the only person who commented on What Helped the Voiceless? Historical Case Studies (which later won the EA Forum Prize). 

This will be less of a problem if internet communication is primarily about idle speculations and cat pictures. But of course this is not the primary way I and many others on the Forum engage with the internet. Frequently, the primary publication v... (read more)

2MichaelA11dI think these are useful observations and questions. (Though I think "too many comments" should probably be much less of a worry than "too few", at least if the comments make some effort to be polite and relevant, and except inasmuch as loads of comments on one thing sucks up time that could be spent commenting on other things where that'd be more useful.) I think a few simple steps that could be taken by writers are: 1. People could more often send google doc drafts to a handful of people specifically selected for being more likely than average to (a) be interested in reading the draft and (b) have useful things to say about it 2. People could more often share google doc drafts in the Effective Altruism Editing & Review Facebook group 3. People could more often share google doc drafts in other Facebook groups, Slack workspaces, or the like * E.g., sharing a draft relevant to improving institutional decision-making in the corresponding Facebook group 4. People could more often make posts/shortforms that include an executive summary (or similar) and a link to the full google doc draft, saying that this is still like a draft and they'd appreciate comment * Roughly this has been done recently by Joe Carlsmith and Ben Garfinkel, for example * This could encourage more comments that just posting the whole thing to the Forum as a regular post, since (a) this conveys that this is still a work-in-progress and that comments are welcome, and (b) google docs make it easier to comment on specific points 5. When people do post full versions of things on the Forum (or wherever), they could explicitly indicate that they're interested in feedback, indicate roughly what kinds of feedback would be most valuable, and indicate that they might update the post in light of feedback (if that's true) 6. People could implement the advice given in these two good posts: 1. ht
2MichaelA11dOne other semi-relevant thing from my post Notes on EA-related research, writing, testing fit, learning, and the Forum [] :

cross-posted from Facebook.

Reading Bryan Caplan and Zach Weinersmith's new book has made me somewhat more skeptical about Open Borders (from a high prior belief in its value).

Before reading the book, I was already aware of the core arguments (eg, Michael Huemer's right to immigrate, basic cosmopolitanism, some vague economic stuff about doubling GDP).

I was hoping the book will have more arguments, or stronger versions of the arguments I'm familiar with.

It mostly did not.

The book did convince me that the prima facie case for open borders was stronger than I thought. In particular, the section where he argued that a bunch of different normative ethical theories should all-else-equal lead to open borders was moderately convincing. I think it will have updated me towards open borders if I believed in stronger "weight all mainstream ethical theories equally" moral uncertainty, or if I previously had a strong belief in a moral theory that I previously believed was against open borders.

However, I already fairly strongly subscribe to cosmopolitan utilitarianism and see no problem with aggregating utility across borders. Most of my concerns with open borders are rel... (read more)

2Aaron Gertler1yIf you email this to him, maybe adding a bit more polish, I'd give ~40% odds he'll reply on his blog, given how much he loves to respond to critics who take his work seriously. I actually find this very difficult without envisioning extreme scenarios (e.g. a dark-Hansonian world of productive-but-dissatisfied ems). Almost any situation with enough disutility to counter GDP doubling seems like it would, paradoxically, involve conditions that would reduce GDP (war, large-scale civil unrest, huge tax increases to support a bigger welfare state). Could you give an example or two of situations that would fit your statement here?
1Linch1yI think there was substantial ambiguity in my original phrasing, thanks for catching that! I think there are at least four ways to interpret the statement. 1. Interpreting it literally: I am physically capable (without much difficulty) of imagining situations that are bad to a degree worse than doubling GDP is good. 2. Caplan gives some argument for doubling of GDP that seems persuasive, and claims this is enough to override a conservatism prior, but I'm not confident that the argument is true/robust, and I think it's reasonable to believe that there are possible bad consequences that are bad enough that even if I give >50% probability (or >80%), this is not automatically enough to override a conservatism prior, at least not without thinking about it a lot more. 3. Assume by construction that world GDP will double in the short term. I still think there's a significant chance that the world will be worse off. 4. Assume by construction that world GDP will double, and stay 2x baseline until the end of time. I still think there's a significant chance that the world will be worse off. __ To be clear, when writing the phrasing, I meant it in terms of #2. I strongly endorse #1 and tentatively endorse #3, but I agree that if you interpreted what I meant as #4, what I said was a really strong claim and I need to back it up more carefully.
2Aaron Gertler1yMakes sense, thanks! The use of "doubling GDP is so massive that..." made me think that you were taking that as given in this example, but worrying that bad things could result from GDP-doubling that justified conservatism. That was certainly only one of a few possible interpretations; I jumped too easily to conclusions.
1Linch1yThat was not my intent, and it was not the way I parsed Caplan's argument.

Do people have advice on how to be more emotionally resilient in the face of disaster?

I spent some time this year thinking about things that are likely to be personally bad in the near-future (most salient to me right now is the possibility of a contested election + riots, but this is also applicable to the ongoing Bay Area fires/smoke and to a lesser extent the ongoing pandemic right now, as well as future events like climate disasters and wars). My guess is that, after a modicum of precaution, the direct objective risk isn't very high, but it'll *feel* like a really big deal all the time.

In other words, being perfectly honest about my own personality/emotional capacity, there's a high chance that if the street outside my house is rioting, I just won't be productive at all (even if I did the calculations and the objective risk is relatively low).

So I'm interested in anticipating this phenomenon and building emotional resilience ahead of time so such issues won't affect me as much.

I'm most interested in advice for building emotional resilience for disaster/macro-level setbacks. I think it'd also be useful to build resilience for more personal setbacks (eg career/relationship/impact), but I naively suspect that this is less tractable.


5gavintaylor7moThe last newsletter from Spencer Greenberg/Clearer Thinking might be helpful: []
7Linch7moWow, reading this was actually surprisingly helpful for some other things I'm going through. Thanks for the link!
2Misha_Yagudin8moI think it is useful to separately deal with the parts of a disturbing event over which you have an internal or external locus of control. Let's take a look at riots: * An external part is them happening in your country. External locus of control means that you need to accept the situation. Consider looking into Stoic literature and exercises (say, negative visualizations) to come to peace with that possibility. * An internal part is being exposed to dangers associated with them. Internal locus of control means that you can take action to mitigate the risks. Consider having a plan to temporarily move to a likely peaceful area within your country or to another county.

While talking to my manager (Peter Hurford), I made a realization that by default when "life" gets in the way (concretely, last week a fair amount of hours were taken up by management training seminars I wanted to attend before I get my first interns, this week I'm losing ~3 hours the covid vaccination appointment and in expectation will lose ~5 more from side effects), research (ie the most important thing on my agenda that I'm explicitly being paid to do) is the first to go. This seems like a bad state of affairs.

I suspect that this is more prominent in me than most people, but also suspect this is normal for others as well. More explicitly, I don't have much "normal" busywork like paperwork or writing grants and I try to limit my life maintenance tasks (of course I don't commute and there's other stuff in that general direction). So all the things I do  are either at least moderately useful or entertaining. Eg, EA/work stuff like reviewing/commenting on other's papers, meetings, mentorship stuff, slack messages, reading research and doing research, as well as personal entertainment stuff like social media, memes, videogames etc (which I do much more than I'm willing to admi... (read more)

6Ozzie Gooen4dI liked this, thanks. I hear that this similar to a common problem for many entrepreneurs; they spend much of their time on the urgent/small tasks, and not the really important ones. One solution recommended by Matt Mochary is to dedicate 2 hours per day of the most productive time to work on the the most important problems. [] I've occasionally followed this, and mean to more.
3FJehn4dThis resonated with me a lot. Unfortunately, I do not have a quick fix. However, what seems to help at least a bit for me is seperating planning for a day and doing the work. Every workday the last thing I do (or try to do) is look at my calendar and to do lists and figure out what I should be doing the next day. By doing this I think I am better at assessing at what is important, as I do not have to do it at that moment. I only have to think of what my future self will be capable of doing. When the next day comes and future self turns into present self I find it really helpful to already having the work for the day planned for me. I do not have to think about what is important, I just do what past me decided. Not sure if this is just an obvious way to do this, but I thought it does not hurt to write it down.
2meerpirat4dYeah, I can also relate a lot (doing my PhD). One thing I noticed is that my motivational system slowly but surely seems to update on my AI related worries and that this now and then helps keeping me focused on what I actually think is more important from the EA perspective. Not sure what you are working on, but maybe there are some things that come to your mind how to increase your overall motivation, e.g. by reading or thinking of concrete stories of why the work is important, and by talking to others why you care about the things you are trying to achieve.

I find the unilateralist’s curse a particularly valuable concept to think about. However, I now worry that “unilateralist” is an easy label to tack on, and whether a particular action is unilateralist or not is susceptible to small changes in framing.

Consider the following hypothetical situations:

  1. Company policy vs. team discretion
    1. Alice is a researcher in a team of scientists at a large biomedical company. While working on the development of an HIV vaccine, the team accidentally created an air-transmissible variant of HIV. The scientists must decide whether to publish their discovery with the rest of the company, knowing that leaks may exist, and the knowledge may be used to create a devastating biological weapon, but also that it could help those who hope to develop defenses against such weapons, including other teams within the same company. Most of the team thinks they should keep it quiet, but company policy is strict that such information must be shared with the rest of the company to maintain the culture of open collaboration.
    2. Alice thinks the rest of the team should either share this information or quit. Eventually, she tells her vice president her concer
... (read more)
3JP Addison1yI really like this (I think you could make it top level if you wanted). I think these of these are cases of multiple levels of cooperation. If you're part of an organization that wants to be uncooperative (and you can't leave cooperatively), then you're going to be uncooperative with one of them.
1Linch1yGood point. Now that you bring this up, I vaguely remember [] a Reddit AMA where an evolutionary biologist made the (obvious in hindsight, but never occurred to me at the time) claim that with multilevel selection, altruism on one level is often means defecting on a higher (or lower) level. Which probably unconsciously inspired this post! As for making it top level, I originally wanted to include a bunch of thoughts on the unilateralist's curse as a post, but then I realized that I'm a one-trick pony in this domain...hard to think of novel/useful things that Bostrom et. al hasn't already covered!

Edit: By figuring out  ethics I mean both right and wrong in the abstract but also what the world empirically looks like so you know what is right and wrong in the particulars of a situation, with an emphasis on the latter.

I think a lot about ethics. Specifically, I think a lot about "how do I take the best action (morally), given the set of resources (including information) and constraints (including motivation) that I have." I understand that in philosophical terminology this is only a small subsection of applied ethics, and yet I spend a lot of time thinking about it.

One thing I learned from my involvement in EA for some years is that ethics is hard. Specifically, I think ethics is hard in the way that researching a difficult question or maintaining a complicated relationship or raising a child well is hard, rather than hard in the way that regularly going to the gym is hard. 

When I first got introduced to EA, I believed almost the opposite (this article presents something close to my past views well): that the hardness of living ethically is a matter of execution and will, rather than that of constantly making tradeoffs in a difficult-to-navigate domain. 

I still ... (read more)

I'm worried about a potential future dynamic where an emphasis on forecasting/quantification in EA (especially if it has significant social or career implications) will have adverse effects on making people bias towards silence/vagueness in areas where they don't feel ready to commit to a probability forecast.

I think it's good that we appear to be moving in the direction of greater quantification and being accountable for probability estimates, but I think there's the very real risk that people see this and then become scared of committing their loose thoughts/intuitive probability estimates on record. This may result in us getting overall worse group epistemics because people hedge too much and are unwilling to commit to public probabilities.

See analogy to Jeff Kaufman's arguments on responsible transparency consumption:

Malaria kills a lot more people >age 5 than I would have guessed (Still more deaths <=5 than >5, but a much smaller ratio than I intuitively believed). See C70-C72 of GiveWell's cost-effectiveness estimates for AMF, which itself comes from the Global Burden of Disease Study.

I've previously cached the thought that malaria primarily kills people who are very young, but this is wrong.

I think the intuition slip here is that malaria is a lot more fatal for young people. However, there are more older people than younger people.

In the Precipice, Toby Ord very roughly estimates that the risk of extinction from supervolcanoes this century is 1/10,000 (as opposed to 1/10,000 from natural pandemics, 1/1,000 from nuclear war, 1/30 from engineered pandemics and 1/10 from AGI). Should more longtermist resources be put into measuring and averting the worst consequences of supervolcanic eruption?

More concretely, I know a PhD geologist who's interested in doing an EA/longtermist career and is currently thinking of re-skilling for AI policy. Given that (AFAICT) literally zero people in our community currently works on supervolcanoes, should I instead convince him to investigate supervolcanoes at least for a few weeks/months? 

If he hasn't seriously considered working on supervolcanoes before, then it definitely seems worth raising the idea with him.

I know almost nothing about supervolcanoes, but, assuming Toby's estimate is reasonable, I wouldn't be too surprised if going from zero to one longtermist researcher in this area is more valuable than adding an additional AI policy researcher.

2DonyChristie5moThe biggest risk here I believe is anthropogenic; supervolcanoes could theoretically be weaponized.

What will a company/organization that has a really important secondary mandate to focus on general career development of employees actually look like? How would trainings be structured, what would growth trajectories look like, etc?

When I was at Google, I got the distinct impression that while "career development" and "growth" were common buzzwords, most of the actual programs on offer were more focused on employee satisfaction/retention than growth. (For example, I've essentially never gotten any feedback on my selection of training courses or books that I bought with company money, which at the time I thought was awesome flexibility, but in retrospect was not a great sign of caring about growth on the part of the company).

Edit: Upon a reread I should mention that there are other ways for employees to grow within the company, eg by having some degree of autonomy over what projects they want to work on.

I think there are theoretical reasons for employee career growth being underinvested by default. Namely, that the costs of career growth are borne approximately equally between the employer and the employee (obviously this varies from case to case), whil... (read more)

4Ozzie Gooen7moDefinitely agreed. That said, I think some of this should probably be looked through the lens of "Should EA as a whole help people with personal/career development rather than specific organizations, as the benefits will accrue to the larger community (especially if people only stay at orgs for a few years). I'm personally in favor of expensive resources being granted to help people early in their careers. You can also see some of this in what OpenPhil/FHI funds; there's a big focus on helping people get useful PhDs. (though this helps a small minority of the entire EA movement)

I'm interested in a collection of backchaining posts by EA organizations and individuals, that traces back from what we want -- an optimal, safe, world -- back to specific actions that individuals and groups can take.

Can be any level of granularity, though the more precise, the better.

Interested in this for any of the following categories:

  • Effective Altruism
  • Longtermism
  • General GCR reduction
  • AI Safety
  • Biorisk
  • Institutional decision-making
4MichaelA5moI think a sort-of relevant collection can be found in the answers to this question about theory of change diagrams [] . And those answers also include other relevant discussion, like the pros and cons of trying to create and diagrammatically represent explicit theories of change. (A theory of change diagram won't necessarily exactly meet your criteria, in the sense that it may backchain from an instrumental rather than intrinsic goal, but it's sort-of close.) The answers in that post include links to theory of change diagrams from Animal Charity Evaluators [] (p.15), Convergence Analysis [] , Happier Lives Institute [], Leverage Research [], MIRI [], and Rethink Priorities [] . Those are the only 6 research orgs I know of which have theory of change diagrams. (But that question was just about research orgs, and having such diagrams might be somewhat more common among non-research organisations.) I think Leverage's diagram might be the closest thing I know of to a fairly granular backchaining from one's ultimate goals. It also seems to me quite unwieldy - I spent a while trying to read it once, but it felt annoying to navigate and hard to really get the overall gist of. (That was just my personal take, though.) One could also argue that Toby Ord's "grand strategy for humanity"[1] is a very low-granularity instance of backchaining from one's ultimate goals.
2Linch5moIt has occurred to me that very few such documents exist.
1DonyChristie5moI'm curious what it looks like to backchain from something so complex. I've tried it repeatedly in the past and feel like I failed.

I continue to be fairly skeptical that the all-things-considered impact of EA altruistic interventions differ by multiple ( say >2) orders of magnitude ex ante (though I think it's plausible ex post). My main crux here is that I believe general meta concerns start dominating once the object-level impacts are small enough.

This is all in terms of absolute value of impact. I think it's quite possible that some interventions have large (or moderately sized) negative impact, and I don't know how the language of impact in terms of multiplication best deals with this.

7EdoArad5moBy "meta concerns", do you mean stuff like base rate of interventions, risk of being wildly wrong, methodological errors/biases, etc.? I'd love it if you could expand a bit. Also, did you mean that these dominate when object-level impacts are big enough?
4Linch5moHmm I think those are concerns too, but I guess I was primarily thinking about meta-EA concerns like whether an intervention increases or decreases EA prestige, willingness of new talent to work on EA organizations, etc. No. Sorry I was maybe being a bit confusing with my language. I mean to say that when comparing two interventions, the meta-level impacts of the less effective intervention will dominate if you believe the object-level impact of the less effective intervention is sufficiently small. Consider two altruistic interventions, direct AI Safety research and forecasting. Suppose that you did the analysis and think the object-level impact of AI Safety research is X (very high) and the impact of forecasting is only 0.0001X. (This is just an example. I do not believe that the value of forecasting is 10,000 times lower than AI Safety research). I think it will then be wrong to think that the all-things-considered value of an EA doing forecasting is 10,000 times lower than the value of an EA doing direct AI Safety research, if for no other reason than because EAs doing forecasting has knock-on effects on EAs doing AI Safety. If the object-level impacts of the less effective intervention are big enough, then it's less obvious that the meta-level impacts will dominate. If your analysis instead gave a value of forecasting as 3x less impactful than AIS research, then I have to actually present a fairly strong argument for why the meta-level impacts may still dominate, whereas I think it's much more self-evident at the 10,000x difference level. Let me know if this is still unclear, happy to expand. Oh, also a lot of my concerns (in this particular regard) mirror Brian Tomasik's, so maybe it'd be easier to just read his post [] .
4EdoArad5moThanks, much clearer! I'll paraphrase the crux to see if I understand you correctly: If the EA community is advocating for interventions X and Y, then more resources R going into Y leads to more resources going into X (within about R/10^2). Is this what you have in mind?
2Linch5moYes, though I'm strictly more confident about absolute value than the change being positive (So more resources R going into Y can also eventually lead to less resources going into X, within about R/10^2).
2EdoArad5moAnd the model is that increased resources into main EA cause areas generally affects the EA movement by increasing its visibility, diverting resources from that cause area to others, and bringing in more people in professional contact with EA orgs/people - those general effects trickle down to other cause areas?
2Linch5moYes that sounds right. There are also internal effects in framing/thinking/composition that by itself have flow-through effects that are plausibly >1% in expectation. For example, more resources going into forecasting may cause other EAs to be more inclined to quantify uncertainty and focus on the quantifiable, with both potentially positive and negative [] flow-through effects, more resources going into medicine- or animal welfare- heavy causes will change the gender composition of EA, and so forth.
2EdoArad5moThanks again for the clarification! I think that these flow-through effects mostly apply to specific targets for resources that are more involved with the EA-community. For example, I wouldn't expect more resources going into efforts by Tetlock to improve the use of forecasting in the US government to have visible flow-through effects on the community. Or more resources going into AMF are not going to affect the community. I think that this might apply particularly well to career choices. Also, if these effects are as large as you think, it would be good to more clearly articulate what are the most important flow-through effects and how do we improve the positives and mitigate the negatives.

Do people have thoughts on what the policy should be on upvoting posts by coworkers? 

Obviously telling coworkers (or worse, employees!) to upvote your posts should be verboten, and having a EA forum policy that you can't upvote posts by coworkers is too draconian (and also hard to enforce). 

But I think there's a lot of room in between to form a situation like "where on average posts by people who work at EA orgs will have more karma than posts of equivalent semi-objective quality." Concretely, 2 mechanisms in which this could happen (and almost c... (read more)

9Aaron Gertler3moI'd prefer that people on the Forum not have to worry too much about norms of this kind. If you see a post or comment you think is good, upvote it. If you're worried that you and others at your org have unequal exposure to coworkers' content, make a concerted effort to read other Forum posts as well, or even share those posts within your organization. That said, if you want to set a norm for yourself or suggest one for others, I have no problem with that — I just don't see the Forum adopting something officially. Part of the problem is that people often have friends or housemates at other orgs, share an alma mater or cause area with a poster. etc. — there are many ways to be biased by personal connections, and I want to push us toward reading and supporting more things rather than trying to limit the extent to which people express excitement out of concern for these biases.

crossposted from LessWrong

There should maybe be an introductory guide for new LessWrong users coming in from the EA Forum, and vice versa.

I feel like my writing style (designed for EAF) is almost the same as that of LW-style rationalists, but not quite identical, and this is enough to be substantially less useful for the average audience member there.

For example, this identical question is a lot less popular on LessWrong than on the EA Forum, despite naively appearing to appeal to both audiences (and indeed if I were to guess at the purview of LW, to be cl... (read more)

2MichaelA2moI do agree that there are notable differences in what writing styles are often used and appreciated on the two sites. Could this also be simply because of a difference in the extent to which people already know your username and expect to find posts from it interesting on the two sites? Or, relatedly, a difference in how many active users on each site you know personally? I'm not sure how much those factors affect karma and comment numbers on either site, but it seems plausible that the have a substantial affect (especially given how an early karma/comment boost can set off a positive feedback loop). Also, have you crossposted many things and noticed this pattern, or was it just a handful? I think there's a lot of "randomness" in karma and comment numbers on both sites, so if it's just been a couple crossposts it seems hard to be confident that any patterns would hold in future. Personally, when I've crossposted something to the EA Forum and to LessWrong, those posts have decently often gotten more karma on the Forum and decently often the opposite, and (from memory) I don't think there's been a strong tendency in one direction or the other.
2Linch2moYeah I think this is plausible. Pretty unfortunate though. I don't ever recall having a higher karma on LW than the Forum, though I wouldn't be surprised if it happened once or twice.

Are there any EAA researchers carefully tracking the potential of huge cost-effectiveness gains in the ag industry from genetic engineering advances of factory farmed animals? Or (less plausibly) advances from better knowledge/practice/lore from classical artificial selection? As someone pretty far away from the field, a priori the massive gains made in biology/genetics in the last few decades seems like something that we plausibly have not priced in in. So it'd be sad if EAAs get blindsided by animal meat becoming a lot cheaper in the next few decades (if this is indeed viable, which it may not be).

4MichaelStJules4dBesides just extrapolating trends in cost of production/prices, I think the main things to track would be feed conversion ratios [] and the possibility of feeding animals more waste products or otherwise cheaper inputs, since feed is often the main cost of production. Some FCRs are already < 2 and close to 1, e.g. it takes less than 2kg of input to get 1kg of animal product (this could be measured in just weight, calories, protein weight, etc..), e.g. for chickens, some fishes and some insects. I keep hearing that animal protein comes from the protein in what animals eat (but I think there are some exceptions, at least), so this would put a lower bound of 1 on FCR in protein terms, and there wouldn't be much further to go for animals close to that. I think a lower bound of around 1 for weight of feed to weight of animal product also makes sense, maybe especially if you ignore water in and out. So, I think chicken meat prices could roughly at most halve again, based on these theoretical limits, and it's probably much harder to keep pushing. Companies are also adopting less efficient breeds to meet welfare standards like the Better Chicken Commitment [], since these breeds have really poor welfare due to their accelerated growth. This might be on Lewis Bollard's radar, since he has written about the cost of production, prices and more general trends in animal agriculture.
2Pablo10dThis post [] may be of interest, in case you haven't seen it already.
2Linch10dYep, aware of this! Solid post.

I'm now pretty confused about whether normative claims can be used as evidence in empirical disputes. I generally believed no, with the caveat that for humans, moral beliefs are built on a scaffolding of facts, and sometimes it's easier to respond to an absurd empirical claim with the moral claim that has the gestalt sense of empirical beliefs if there isn't an immediately accessible empirical claim.

I talked to a philosopher who disagreed, and roughly believed that strong normative claims can be used as evidence against more confused/less c... (read more)

8MichaelDickens7moI haven't really thought about it, but it seems to me that if an empirical claim implies an implausible normative claim, that lowers my subjective probability of the empirical claim.

Updated version on

Cute theoretical argument for #flattenthecurve at any point in the distribution

  1. What is #flattenthecurve?
    1. The primary theory behind #flattenthecurve is assuming that everybody who will get COVID-19 will eventually get it there anything else you can do?
    2. It turns out it’s very valuable to
      1. Delay the spread so that a) the peak of the epidemic spread is lower (#flattenthecurve)
      2. Also to give public health professionals, healthcare sy
... (read more)

I think it's really easy to get into heated philosophical discussions about whether EAs overall use too much or too little jargon. Rather than try to answer this broadly for EA as a whole, it might be helpful for individuals to conduct a few quick polls to decide for themselves whether they ought to change their lexicon. 

Here's my Twitter poll as one example.  

Economic benefits of mediocre local human preferences modeling.

Epistemic status: Half-baked, probably dumb.

Note: writing is mediocre because it's half-baked.

Some vague brainstorming of economic benefits from mediocre human preferences models.

Many AI Safety proposals include understanding human preferences as one of its subcomponents [1]. While this is not obviously good[2], human modeling seems at least plausibly relevant and good.

Short-term economic benefits often spur additional funding and research interest [citation not given]. So a possible quest... (read more)

I find it quite hard to do multiple quote-blocks in the same comment on the forum. For example, this comment took one 5-10 tries to get right. 

2JP Addison2moWhat editor are you using? The default rich text editor? (EA Forum Docs) What's the issue?
2Linch2moThe default rich text editor. The issue is that if I want to select one line and quote/unquote it, it either a) quotes (unquotes) lines before and after it, or creates a bunch of newlines before and after it. Deleting newlines in quote blocks also has the issue of quoting (unquoting) unintended blocks. Perhaps I should just switch to markdown for comments, and remember to switch back to a rich text editor for copying and pasting top-level posts?
4Aaron Gertler2moSome ways that I do multiple blockquotes in posts/comments: 1. Start with nothing in blockquotes. Then, make sure anything I want to blockquote is in its own paragraph. Then, highlight the paragraph and format it as a quote. I haven't ever seen this pick up earlier/later paragraphs, and any newlines that are created, I can just delete. 2. You can also start with everything in blockquotes. If you hit "enter" at the end of one paragraph, you'll create a blank blockquote line between it and the next paragraph. If you hit "enter" from the newline, you'll end up with two separate blockquoted sections with a non-blockquote line in the middle. It sounds like you're seeing some unexpected behavior when you try (1), but I haven't been able to replicate it. If you want to jump on a quick call to investigate, that might be easier than trying to resolve the issue via text — you can set one up here [].

On the forum, it appears to have gotten harder for me to do multiple quote blocks in the same comment. I now often have to edit a post multiple times so quoted sentences are correctly in quote blocks, and unquoted sections are not. Whereas in the past I do not recall having this problem?

2JP Addison5moI'm going to guess that the new editor is the difference between now and previously. What's the issue you're seeing? Is there a difference between the previewed and rendered text? Ideally you could get this to repro on LessWrong's development server [], which would be useful for bug reports, but no worries if not.

Cross-posted from Facebook

On the meta-level, I want to think hard about the level of rigor I want to have in research or research-adjacent projects.

I want to say that the target level of rigor I should have is substantially higher than for typical FB or Twitter posts, and way lower than research papers.

But there's a very wide gulf! I'm not sure exactly what I want to do, but here are some gestures at the thing:

- More rigor/thought/data collection should be put into it than 5-10 minutes typical of a FB/Twitter post, but much less than a hundred or... (read more)