[EDIT: Thanks for the questions everyone! Just noting that I'm mostly done answering questions, and there were a few that came in Tuesday night or later that I probably won't get to.]
Hi everyone! I’m Ajeya, and I’ll be doing an Ask Me Anything here. I’ll plan to start answering questions Monday Feb 1 at 10 AM Pacific. I will be blocking off much of Monday and Tuesday for question-answering, and may continue to answer a few more questions through the week if there are ones left, though I might not get to everything.
About me: I’m a Senior Research Analyst at Open Philanthropy, where I focus on cause prioritization and AI. 80,000 Hours released a podcast episode with me last week discussing some of my work, and last September I put out a draft report on AI timelines which is discussed in the podcast. Currently, I’m trying to think about AI threat models and how much x-risk reduction we could expect the “last long-termist dollar” to buy. I joined Open Phil in the summer of 2016, and before that I was a student at UC Berkeley, where I studied computer science, co-ran the Effective Altruists of Berkeley student group, and taught a student-run course on EA.
I’m most excited about answering questions related to AI timelines, AI risk more broadly, and cause prioritization, but feel free to ask me anything!
Looking at the mistakes you've made in the past, what fraction of your (importance-weighted) mistakes would you classify the issue as being:
And what ratios would you assign to this for EAs/career EAs in general?
For context, a coworker and I recently had a discussion about, loosely speaking, whether it was more important for junior researchers within EA to build domain knowledge or general skills. Very very roughly, my coworker was more on the former case because he thought that EAs had an undersupply of domain knowledge over so-called "generalist skills." However, I leaned more on the latter side of this debate because I weakly believe that more of my mistakes (and more of my most critical mistakes) were due to errors of cognition rather than insufficient knowledge of facts. (Obviously credit assignment is hard in both cases).
My answer to this one is going to be a pretty boring "it depends" unfortunately. I was speaking to my own experience in responding to the top level question, and since I do a pretty "generalist"-y job, improving at general reasoning is likely to be more important for me. At least when restricting to areas that seem highly promising from a long-termist perspective, I think questions of personal fit and comparative advantage will end up determining the degree to which someone should be specialized in a particular topic like machine learning or biology.
I also... (read more)