[This post was written quickly and presents the idea in broad strokes. I hope it prompts more nuanced and detailed discussions in the future.]
In recent years, many in the Effective Altruism community have shifted to working on AI risks, reflecting the growing consensus that AI will profoundly shape our future.
In response to this significant shift, there have been efforts to preserve a "principles-first EA" approach, or to give special thought into how to support non-AI causes. This has often led to discussions being framed around "AI Safety vs. everything else". And it feels like the community is somewhat divided along the following lines:
- Those working on AI Safety, because they believe that transformative AI is coming.
- Those focusing on other causes, implicitly acting as if transformative AI is not coming.[1]
Instead of framing priorities this way, I believe it would be valuable for more people to adopt a mindset that assumes transformative AI is likely coming and asks: What should we work on in light of that?
If we accept that AI is likely to reshape the world over the next 10–15 years, this realisation will have major implications for all cause areas. But just to start, we should strongly ask ourselves: "Are current GHW & animal welfare projects robust to a future in which AI transforms economies, governance, and global systems?" If they aren't, they are unlikely to be the best use of resources.
Importantly, this isn't an argument that everyone should work on AI Safety. It's an argument that all cause areas need to integrate the implications of transformative AI into their theory of change and strategic frameworks. To ignore these changes is to risk misallocating resources and pursuing projects that won't stand the test of time.
- ^
Important to note: Many people believe that AI will be transformative, but choose not to work on it due to factors such as (perceived) lack of personal fit or opportunity, personal circumstances, or other practical considerations.
EA charities can also combine education and global health, like https://healthlearn.org/blog/updated-impact-model
HealthLearn builds a mobile app for health workers (nurses, midwives, doctors, community health workers) in Nigeria und Uganda. Health workers use it to learn clinical best practices. This leads to better outcomes for patients.
I'm personally very excited by this. Health workers in developing countries often have few training resources available. There are several clinical practices that can improve patient outcomes while being easy to implement (such as initiating breastfeeding immediately after birth). These are not as widely used as we would like.
HealthLearn uses technology as a way to faithfully scale the intervention to thousands of health workers. At this point, AI does not play a significant role in the learning process yet. Courses are manually designed. This was important to get started quickly, but also to get approval from government health agencies and professional organizations such as nursing councils.
The impact model that I've linked to above estimates that the approach has been cost-effective so far, and could become better with scale.
(disclaimer: I'm one of the software engineers building the app)