(Crossposted to LessWrong)
Abstract
The linked paper is our submission to the Open Philanthropy AI Worldviews Contest. In it, we estimate the likelihood of transformative artificial general intelligence (AGI) by 2043 and find it to be <1%.
Specifically, we argue:
- The bar is high: AGI as defined by the contest—something like AI that can perform nearly all valuable tasks at human cost or less—which we will call transformative AGI is a much higher bar than merely massive progress in AI, or even the unambiguous attainment of expensive superhuman AGI or cheap but uneven AGI.
- Many steps are needed: The probability of transformative AGI by 2043 can be decomposed as the joint probability of a number of necessary steps, which we group into categories of software, hardware, and sociopolitical factors.
- No step is guaranteed: For each step, we estimate a probability of success by 2043, conditional on prior steps being achieved. Many steps are quite constrained by the short timeline, and our estimates range from 16% to 95%.
- Therefore, the odds are low: Multiplying the cascading conditional probabilities together, we estimate that transformative AGI by 2043 is 0.4% likely. Reaching >10% seems to require probabilities that feel unreasonably high, and even 3% seems unlikely.
Thoughtfully applying the cascading conditional probability approach to this question yields lower probability values than is often supposed. This framework helps enumerate the many future scenarios where humanity makes partial but incomplete progress toward transformative AGI.
Executive summary
For AGI to do most human work for <$25/hr by 2043, many things must happen.
We forecast cascading conditional probabilities for 10 necessary events, and find they multiply to an overall likelihood of 0.4%:
Event | Forecastby 2043 or TAGI, |
We invent algorithms for transformative AGI | 60% |
We invent a way for AGIs to learn faster than humans | 40% |
AGI inference costs drop below $25/hr (per human equivalent) | 16% |
We invent and scale cheap, quality robots | 60% |
We massively scale production of chips and power | 46% |
We avoid derailment by human regulation | 70% |
We avoid derailment by AI-caused delay | 90% |
We avoid derailment from wars (e.g., China invades Taiwan) | 70% |
We avoid derailment from pandemics | 90% |
We avoid derailment from severe depressions | 95% |
Joint odds | 0.4% |
If you think our estimates are pessimistic, feel free to substitute your own here. You’ll find it difficult to arrive at odds above 10%.
Of course, the difficulty is by construction. Any framework that multiplies ten probabilities together is almost fated to produce low odds.
So a good skeptic must ask: Is our framework fair?
There are two possible errors to beware of:
- Did we neglect possible parallel paths to transformative AGI?
- Did we hew toward unconditional probabilities rather than fully conditional probabilities?
We believe we are innocent of both sins.
Regarding failing to model parallel disjunctive paths:
- We have chosen generic steps that don’t make rigid assumptions about the particular algorithms, requirements, or timelines of AGI technology
- One opinionated claim we do make is that transformative AGI by 2043 will almost certainly be run on semiconductor transistors powered by electricity and built in capital-intensive fabs, and we spend many pages justifying this belief
Regarding failing to really grapple with conditional probabilities:
- Our conditional probabilities are, in some cases, quite different from our unconditional probabilities. In particular, we assume that a world on track to transformative AGI will…
- Construct semiconductor fabs and power plants at a far faster pace than today (our unconditional probability is substantially lower)
- Have invented very cheap and efficient chips by today’s standards (our unconditional probability is substantially lower)
- Have higher risks of disruption by regulation
- Have higher risks of disruption by war
- Have lower risks of disruption by natural pandemic
- Have higher risks of disruption by engineered pandemic
Therefore, for the reasons above—namely, that transformative AGI is a very high bar (far higher than “mere” AGI) and many uncertain events must jointly occur—we are persuaded that the likelihood of transformative AGI by 2043 is <1%, a much lower number than we otherwise intuit. We nonetheless anticipate stunning advancements in AI over the next 20 years, and forecast substantially higher likelihoods of transformative AGI beyond 2043.
For details, read the full paper.
About the authors
This essay is jointly authored by Ari Allyn-Feuer and Ted Sanders. Below, we share our areas of expertise and track records of forecasting. Of course, credentials are no guarantee of accuracy. We share them not to appeal to our authority (plenty of experts are wrong), but to suggest that if it sounds like we’ve said something obviously wrong, it may merit a second look (or at least a compassionate understanding that not every argument can be explicitly addressed in an essay trying not to become a book).
Ari Allyn-Feuer
Areas of expertise
I am a decent expert in the complexity of biology and using computers to understand biology.
- I earned a Ph.D. in Bioinformatics at the University of Michigan, where I spent years using ML methods to model the relationships between the genome, epigenome, and cellular and organismal functions. At graduation I had offers to work in the AI departments of three large pharmaceutical and biotechnology companies, plus a biological software company.
- I have spent the last five years as an AI Engineer, later Product Manager, now Director of AI Product, in the AI department of GSK, an industry-leading AI group which uses cutting edge methods and hardware (including Cerebras units and work with quantum computing), is connected with leading academics in AI and the epigenome, and is particularly engaged in reinforcement learning research.
Track record of forecasting
While I don’t have Ted’s explicit formal credentials as a forecaster, I’ve issued some pretty important public correctives of then-dominant narratives:
- I said in print on January 24, 2020 that due to its observed properties, the then-unnamed novel coronavirus spreading in Wuhan, China, had a significant chance of promptly going pandemic and killing tens of millions of humans. It subsequently did.
- I said in print in June 2020 that it was an odds-on favorite for mRNA and adenovirus COVID-19 vaccines to prove highly effective and be deployed at scale in late 2020. They subsequently did and were.
- I said in print in 2013 when the Hyperloop proposal was released that the technical approach of air bearings in overland vacuum tubes on scavenged rights of way wouldn’t work. Subsequently, despite having insisted they would work and spent millions of dollars on them, every Hyperloop company abandoned all three of these elements, and development of Hyperloops has largely ceased.
- I said in print in 2016 that Level 4 self-driving cars would not be commercialized or near commercialization by 2021 due to the long tail of unusual situations, when several major car companies said they would. They subsequently were not.
- I used my entire net worth and borrowing capacity to buy an abandoned mansion in 2011, and sold it seven years later for five times the price.
Luck played a role in each of these predictions, and I have also made other predictions that didn’t pan out as well, but I hope my record reflects my decent calibration and genuine open-mindedness.
Ted Sanders
Areas of expertise
I am a decent expert in semiconductor technology and AI technology.
- I earned a PhD in Applied Physics from Stanford, where I spent years researching semiconductor physics and the potential of new technologies to beat the 60 mV/dec limit of today's silicon transistor (e.g., magnetic computing, quantum computing, photonic computing, reversible computing, negative capacitance transistors, and other ideas). These years of research inform our perspective on the likelihood of hardware progress over the next 20 years.
- After graduation, I had the opportunity to work at Intel R&D on next-gen computer chips, but instead, worked as a management consultant in the semiconductor industry and advised semiconductor CEOs on R&D prioritization and supply chain strategy. These years of work inform our perspective on the difficulty of rapidly scaling semiconductor production.
- Today, I work on AGI technology as a research engineer at OpenAI, a company aiming to develop transformative AGI. This work informs our perspective on software progress needed for AGI. (Disclaimer: nothing in this essay reflects OpenAI’s beliefs or its non-public information.)
Track record of forecasting
I have a track record of success in forecasting competitions:
- Top prize in SciCast technology forecasting tournament (15 out of ~10,000, ~$2,500 winnings)
- Top Hypermind US NGDP forecaster in 2014 (1 out of ~1,000)
- 1st place Stanford CME250 AI/ML Prediction Competition (1 of 73)
- 2nd place ‘Let’s invent tomorrow’ Private Banking prediction market (2 out of ~100)
- 2nd place DAGGRE Workshop competition (2 out of ~50)
- 3rd place LG Display Futurecasting Tournament (3 out of 100+)
- 4th Place SciCast conditional forecasting contest
- 9th place DAGGRE Geopolitical Forecasting Competition
- 30th place Replication Markets (~$1,000 winnings)
- Winner of ~$4200 in the 2022 Hybrid Persuasion-Forecasting Tournament on existential risks (told ranking was “quite well”)
Each finish resulted from luck alongside skill, but in aggregate I hope my record reflects my decent calibration and genuine open-mindedness.
Discussion
We look forward to discussing our essay with you in the comments below. The more we learn from you, the more pleased we'll be.
If you disagree with our admittedly imperfect guesses, we kindly ask that you supply your own preferred probabilities (or framework modifications). It's easier to tear down than build up, and we'd love to hear how you think this analysis can be improved.
The primary issue I guess is that the normal rules don't easily apply here. We don't have good past data to make predictions, so every new requirement added introduces more complexity (and chaos), which might make it less accurate than using fewer variables. Thinking in terms of "all other factors remaining, what are the odds of x" sounds less accurate, but might be the only way to avoid being consumed by all potential variables. Like, ones you don't even mention that I could name include "US democracy breaksdown", "AIs hack the grid", "AIs break the internet/infect every interconnected device with malware", etc.* You could just keep adding more requirements until your probabilities drop to near 0, because it'll be difficult to say with much confidence that any of them are <.01 likely to occur, even though a lot of them probably are. It's probably better just to group several constraints together, and just give a probability that one or more of them occurs (example: "chance that recession/war/regulation/other slows or halts progress"), rather than trying to assess the likelihood of each one. Ordinarily, this wouldn't be a problem, but we don't have any data we could normally work with.
Here's a brief writeup of some agreements/disagreements I have with the individual contraints.
"We invent algorithms for transformative AGI"
I don't know how this is only 60%. I'd place >.5 before 2030, let alone 2043. This is just guesswork, but we seem to be one or two breakthroughs away.
"We invent a way for AGIs to learn faster than humans 40%"
I don't really know what this means, why it's required, or why it's so low. I see in the paper that it mentions humans being sequential learners that takes years, but AIs don't seem to work that way. Imagine if GPT4 took years just to learn basic words. AIs also seem to already be able to learn faster than humans. They currently need more data, but less compute than a human brain. Computers can already process information much faster than a brain. And you don't even need them to learn faster than humans, since once they learn a task, they can just copy that skill to all other AIs. This is a critical point. A human will spend years in Med School just because a senior in the field can't copy their weights and send them to a grad student.
Also, I'm confused how this at .4, given that its conditional of TAI happening. If you have algorithms for TAI, why couldn't they also invent algorithms that learn faster than humans? We already see how current AIs can improve algorithmic efficiency (as just one recent example: https://www.deepmind.com/blog/alphadev-discovers-faster-sorting-algorithms). Improving algorithms is probably one of the easiest things a TAI could do, without having to do any physical world experimentation.
"AGI inference costs drop below $25/hr (per human equivalent) 16%"
I really don't see how this is 16%. Once an AI is able to obtain a new capability, it doesn't seem to cost much to reuse that capability. Example: GPT4, very expensive to train, but it can be used for cents on a dollar afterward. These aren't mechanical humans, they don't need to go through repeated training, knowledge expertise, etc. They only need to do it once, and then it just gets copied.
And, like above, if this is conditional on TAI and faster-than-human learning occurring, how is this only at .016? A faster-than-human TAI can (very probably) improve algorithmic efficiency to radically drive down the cost.
"We invent and scale cheap, quality robots 60%"
This is one where infrastructure and regulation can bottleneck things, so I can understand at least why this is low.
"We massively scale production of chips and power 46%"
If we get TAIs, I imagine scaling will continue or else radically increase. We're already seeing this, and current AIs have much more limited economic potential. We also don't know if we actually need to keep scaling or not, since (as I mentioned), algorithmic efficiency might make this unimportant.
"We avoid derailment by human regulation 70%"
Maybe?
"We avoid derailment by AI-caused delay 90%"
In the paper, it describes this as "superintelligent but expensive AGI may itself warn us to slow progress, to forestall potential catastrophe that would befall both us and it."
That's interesting, but if the AI hasn't coup'd humanity already, wouldn't this just fall under 'regulation derails TAI'? Unless there is some other way progress halts that doesn't involve regulations or AI coups...
"We avoid derailment from wars (e.g., China invades Taiwan) 70%"
Possible, but I don't think this would derail things for 20 years. Maybe 5.
"We avoid derailment from pandemics 90%"
Pandemics also increase with the chances of TAI (or, maybe, they go down, depending, AI could possibly detect and predict a pandemic much better). This is one of the issues with all of this, everything is so entangled, and it's not actually that easy to say which way variables will influence each other. I'm pretty sure it's not 50/50 it goes one way or the other, so it probably does greatly influence it.
"We avoid derailment from severe depressions"
Not sure, here. It's not as though everyone will be going out and buying TPUs with or without economic worries. Not all industries slow or halt, even during a depression. Algorithmic efficiency especially seems unlikely to be affected by this.
Overall, I think the hardware and regulatory constraints are the most likely limiting factors. I'm not that sure about anything else.
*I originally wrote up another AI-related scenario, but decided it shouldn't be publicly stated at the moment.